
USE-CASE 2.0
The Guide to Succeeding with Use Cases

Ivar Jacobson
Ian Spence
Kurt Bittner

December 2011

USE-CASE 2.0 The Definitive Guide

About this Guide 3
How to read this Guide 3

What is Use-Case 2.0? 4

First Principles 5
Principle 1: Keep it simple by telling stories 5
Principle 2: Understand the big picture 5
Principle 3: Focus on value 7
Principle 4: Build the system in slices 8
Principle 5: Deliver the system in increments 10
Principle 6: Adapt to meet the team’s needs 11

Use-Case 2.0 Content 13
Things to Work With 13
Work Products 18
Things to do 23

Using Use-Case 2.0 30
Use-Case 2.0: Applicable for all types of system 30
Use-Case 2.0: Handling all types of requirement 31
Use-Case 2.0: Applicable for all development approaches 31
Use-Case 2.0: Scaling to meet your needs – scaling in, scaling out and scaling up 39

Conclusion 40

Appendix 1: Work Products 41
Supporting Information 42
Test Case 44
Use-Case Model 46
Use-Case Narrative 47
Use-Case Realization 49
Glossary of Terms 51

Acknowledgements 52
General 52
People 52
Bibliography 53
About the Authors 54

USE-CASE 2.0 The Definitive Guide Page 2
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

About this Guide
This guide describes how to apply use cases in an agile and scalable fashion. It builds on the current state of
the art to present an evolution of the use-case technique that we call Use-Case 2.0. The goal is to provide you
with a foundation to help you get the most out of your use cases; one that is not only applicable for small co-
located agile teams but also large distributed teams, outsourcing, and complex multi-system developments.

It presents the essentials of use-case driven development as an accessible and re-usable practice. It also pro-
vides an introduction to the idea of use cases and their application. It is deliberately kept lightweight. It is not
a comprehensive guide to all aspects of use cases, or a tutorial on use-case modeling. It may not be sufficient
for you to adopt the practice. For example, it is not intended to teach you how to model, for this we refer you
to our previously published books on the subject.

how to read this Guide
The guide is structured into four main chapters:

• What is Use-Case 2.0? – A one page introduction to the practice.
• First Principles – An introduction to use cases based around the 6 principles that act as the foundation
 for the practice.
• Use-Case 2.0 Content – The practice itself presented as a set of key concepts, activities, work products,
 and the rules that bind them together.
• Using Use-Case 2.0 – A summary of when and how to apply the practice.

These are topped and tailed with this brief introduction, and a short conclusion.

If you are new to use cases then you might want to read the “What is Use-Case 2.0?”, the “First Principles”, and
the “Using Use-Case 2.0” chapters to understand the basic concepts. You can then dip into the “Use-Case 2.0
Content” as and when you start to apply the practice.

If you are familiar with the basics of use cases then you might prefer to dive straight into the “Use-Case 2.0
Content” and “Using Use-Case 2.0” chapters once you’ve read the “What is Use-Case 2.0?” chapter. This will help
you compare Use-Case 2.0 with your own experiences and understand what has changed.

Alternatively you could just read all the chapters in the order presented.

USE-CASE 2.0 The Definitive Guide Page 3
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

What is Use-Case 2.0?
Use Case: A use case is all the ways of using a system to achieve a particular goal for a particular user. Taken
together the set of all the use cases gives you all of the useful ways to use the system, and illustrates the value
that it will provide.

Use-Case 2.0: A scalable, agile practice that uses use cases to capture a set of requirements and drive the
incremental development of a system to fulfill them.

Use-Case 2.0 drives the development of a system by first helping you understand how the system will be used
and then helping you evolve an appropriate system to support the users. It can be used alongside your cho-
sen management and technical practices to support the successful development of software and other forms
of system. As you will see Use-Case 2.0 is:

• lightweight
• Scalable
• versatile
• Easy to use

Use cases make it clear what a system is going to do and, by intentional omission, what it is not going to do.
They enable the effective envisioning, scope management and incremental development of systems of any
type and any size. They have been used to drive the development of software systems since their initial in-
troduction at ooPSlA in 1987. over the years they have become the foundation for many different methods
and an integral part of the Unified Modeling language. They are used in many different contexts and envi-
ronments, and by many different types of team. For example use cases can be beneficial for both small agile
development teams producing user-intensive applications and large projects producing complex systems of
interconnected systems, such as enterprise systems, product lines, and systems in the cloud.

The use-case approach has a much broader scope than just requirements capture. As mentioned before they
can and should be used to drive the development, which means that Use-Case 2.0 also supports the analysis,
design, planning, estimation, tracking and testing of systems. It does not prescribe how you should plan or
manage your development work, or how you should design, develop or test your system. It does however
provide a structure for the successful adoption of your selected management and development practices.

Use-Case 2.0 exists as a proven and well-defined practice. Although the term Use-Case 2.0 suggests a new ver-
sion of use cases, it does not refer to an update of the Unified Modeling language, but rather to cumulative
changes in the way software developers and business analysts apply use cases. A use case is still a use case
but the ways that we present, address and manage them have all evolved to be more effective. The changes
are not theoretical but are pragmatic changes based on 20 years of experience from all over the world and all
areas of software development.

USE-CASE 2.0 The Definitive Guide Page 4
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

First Principles
There are six basic principles at the heart of any successful application of use cases:

1. Keep it simple by telling stories
2. Understand the big picture
3. Focus on value
4. build the system in slices
5. Deliver the system in increments
6. Adapt to meet the team’s needs

In this chapter we look at these principles in more detail and use them to introduce the concepts of use-case
modeling and use-case driven development.

Principle 1: Keep it simple by telling stories
Storytelling is how cultures survive and progress; it is the simplest and most effective way to pass knowledge
from one person to another. It is the best way to communicate what a system should do, and to get everybody
working on the system to focus on the same goals.

The use cases capture the goals of the system. To understand a use case we tell stories. The stories cover how
to successfully achieve the goal, and how to handle any problems that may occur on the way. Use cases pro-
vide a way to identify and capture all the different but related stories in a simple but comprehensive way. This
enables the system’s requirements to be easily captured, shared and understood.

As a use case is focused on the achievement of a particular goal, it provides a focus for the storytelling. rather
than trying to describe the system in one go we can approach it use case by use case. The results of the story-
telling are captured and presented as part of the use-case narrative that accompanies each use case.

When using storytelling as a technique to communicate requirements it is essential to make sure that the
stories are captured in a way that makes them actionable and testable. A set of test cases accompanies each
use-case narrative to complete the use case’s description. The test cases are the most important part of a use
case’s description, more important even than the use-case narrative. This is because they make the stories real,
and their use can unambiguously demonstrate that the system is doing what it is supposed to do. It is the test
cases that define what it means to successfully implement the use case.

Principle 2: Understand the big picture
Whether the system you are developing is large or small, whether it is a software system, a hardware system
or a new business, it is essential that you understand the big picture. Without an understanding of the system
as a whole you will find it impossible to make the correct decisions about what to include in the system, what
to leave out of it, what it will cost, and what benefit it will provide. This doesn’t mean capturing all the require-
ments up front. You just need to create something that sums up the desired system and lets you understand
scope and progress at a system level.

USE-CASE 2.0 The Definitive Guide Page 5
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

A use-case diagram is a simple way of presenting an overview of a system’s requirements. Figure 1 shows the
use-case diagram for a simple telephone system. From this picture you can see all the ways the system can be
used, who starts the interaction, and any other parties involved. For example a Calling Subscriber can place
a local call or a long-distance call to any of the system’s Callable Subscribers. You can also see that the users
don’t have to be people but can also be other systems, and in some cases both (for example the role of the
Callable Subscriber might be played by an answering machine and not a person).

FIGURe 1: THe USe-CASe DIAGRAM FoR A SIMPle TelePHoNe SySTeM

A use-case diagram is a view into a use-case model. Use-case models acknowledge the fact that systems sup-
port many different goals from many different stakeholders. In a use-case model the stakeholders that use the
system and contribute to the completion of the goals are modeled as actors, and the ways that the system will
be used to achieve these goals are modeled as use cases. In this way the use-case model provides the context
for the system’s requirements to be discovered, shared and understood. It also provides an easily accessible
big picture of all the things the system will do. In a use-case diagram, such as Figure 1, the actors are shown
as stick-men and the use cases as ellipses. The arrowheads indicate the initiator of the interaction (an Actor or
the System) allowing you to clearly see who starts the use case.

A use-case model is a model of all the useful ways to use a system. It allows you to very quickly scope the sys-
tem – what is included and what is not – and give the team a comprehensive picture of what the system will
do. It lets you do this without getting bogged down in the details of the requirements or the internals of the
system. With a little experience it is very easy to produce use-case models for even the most complex systems,
creating an easily accessible big picture that makes the scope and goals of the system visible to everyone
involved.

USE-CASE 2.0 The Definitive Guide Page 6
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

PLACE LOCAL CALL

PLACE LONG DISTANCE CALL

RETRIEVE CUSTOMER BILLING INFO

GET CALL HISTORY

CALLABLE
SUBSCRIBER

BILLING
SYSTEM

CALLING
SUBSCRIBER

CUSTOMER

Principle 3: Focus on value
When trying to understand how a system will be used it is always important to focus on the value it will pro-
vide to its users and other stakeholders. value is only generated if the system is actually used; so it is much
better to focus on how the system will be used than on long lists of the functions or features it will offer.

Use cases provide this focus by concentrating on how the system will be used to achieve a specific goal for a
particular user. They encompass many ways of using the system; those that successfully achieve the goals, and
those that handle any problems that may occur. To make the value easy to quantify, identify and deliver you
need to structure the use-case narrative. To keep things simple start with the simplest possible way to achieve
the goal. Then capture any alternative ways of achieving the goal and how to handle any problems that might
occur whilst trying to achieve the goal. This will make the relationships between the ways of using the system
clear. It will enable the most valuable ways to be identified and progressed up front, and allow the less valu-
able ones to be added later without breaking or changing what has gone before.

In some cases there will be little or no value in implementing anything beyond the simplest way to achieve
the goal. In other cases providing more options and specialist ways of achieving the goal will provide the key
differentiators that make your system more valuable than your competitors’.

Figure 2 shows a use-case narrative structured in this way. The simplest way of achieving the goal is described
by the basic flow. The others are presented as alternative flows. In this way you create a set of flows that struc-
ture and describe the stories, and help us to find the test cases that complete their definition.

FIGURe 2: THe STRUCTURe oF A USe-CASe NARRATIve

Figure 2 shows the narrative structure for the Withdraw Cash use case for a cash machine. The basic flow is
shown as a set of simple steps that capture the interaction between the users and the system. The alterna-
tive flows identify any other ways of using the system to achieve the goal such as asking for a non-standard
amount, any optional facilities that may be offered to the user such as dispensing a receipt, and any problems
that could occur on the way to achieving the goal such as the card getting stuck.

USE-CASE 2.0 The Definitive Guide Page 7
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

BASIC FLOW ALTERNATIVE FLOWS

1. Insert Card
2. Validate Card
3. Select Cash Withdrawal
4. Select Account
5. Con�rm Availability
 of Funds
6. Return Card
7. Dispense Cash

A1 Invalid Card
A2 Non-Standard Amount
A3 Receipt Required
A4 Insu�cient Funds in ATM
A5 Insu�cient Funds in Acct
A6 Would Cause Overdraft
A7 Card Stuck
A8 Cash Left Behind
etc..

You don’t need to capture all of the flows at the same time. Whilst recording the basic flow it is natural to think
about other ways of achieving the goal, and what could go wrong at each step. You capture these as Alterna-
tive Flows, but concentrate on the basic Flow. You can then return to complete the alternative flows later as
and when they are needed.

This kind of bulleted outline may be enough to capture the stories and drive the development, or it may need
to be elaborated as the team explores the detail of what the system needs to do. The most important thing is
the additive structure of the use-case narrative. The basic flow is needed if the use case is ever to be success-
fully completed; this must be implemented first. The alternatives though are optional. They can be added to
the basic flow as and when they are needed. This allows you to really focus on the value to be obtained from
the system. You no longer need to deliver the whole use case but can focus on those parts of the use case that
offer the most value. It also means that you don’t need a complete use-case model or even a complete use
case before you start to work on the development of the system. If you have identified the most important use
case and understood its basic flow then you already have something of value you could add to your system.

This structure makes the stories easy to capture and validate for completeness, whilst making it easy to filter
out those potential ways of using a system that offer little or no real value to the users. This constant focus on
value will enable you to ensure that every release of your system is as small as possible, whilst offering real
value to the users of the system and the stakeholders that are funding the development.

Principle 4: build the system in slices
Most systems require a lot of work before they are usable and ready for operational use. They have many
requirements, most of which are dependent on other requirements being implemented before they can be
fulfilled and value delivered. It is always a mistake to try to build such a system in one go. The system should
be built in slices, each of which has clear value to the users.

The recipe is quite simple. First, identify the most useful thing that the system has to do and focus on that.
Then take that one thing, and slice it into thinner slices. Decide on the test cases that represent acceptance
of those slices. Some of the slices will have questions that can’t be answered. Put those aside for the moment.
Choose the most central slice that travels through the entire concept from end to end, or as close to that as
possible. Estimate it as a team (estimates don’t have to be “right”, they’re just estimates), and start building it.

This is the approach taken by Use-Case 2.0, where the use cases are sliced up to provide suitably sized work
items, and where the system itself is evolved slice by slice.

Slicing up the use cases
The best way to find the right slices is to think about the stories and how we capture them. Each story is a good
candidate slice. Each story is defined by part of the use-case narrative and one or more of the accompanying
test cases. It is the test cases that are the most important part of the use-case slice’s description because they
make the stories real.

USE-CASE 2.0 The Definitive Guide Page 8
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Applying our recipe above, the use cases identify the useful things that the system will do. Select the most
useful use case to find the most useful thing that the system does. To find the most central slice you will need
to shed all the less important ways of achieving the goal and handling problems. You can do this by focusing
on the story described by the basic flow. A slice based on the basic flow is guaranteed to travel through the
entire concept from end-to-end as it will be the most straightforward way for the user to achieve their goal.

Estimate the slice and start to build it. Additional slices can then be taken from the use case until there are
enough slices to provide this particular user with a usable solution. The same can then be done for any other
use cases you need to complete a usable system.

A use-case slice doesn’t need to contain an entire flow and all its test cases – the first slice might just be the
basic flow and one test case. Additional slices can then be added to complete the flow and address all the test
cases. The slicing mechanism is very flexible enabling you to create slices as big or small as you need to drive
your development.

The slices are more than just requirements and test cases
When we build the system in slices it is not enough to just slice up the requirements. Although use cases have
traditionally been used to help understand and capture requirements, they have always been about more
than this. As shown in Figure 3, the use-case slices slice through more than just the requirements, they also
slice through all the other aspects of the system and its documentation.

FIGURe 3: A USe-CASe SlICe IS MoRe THAN JUST A SlICe oF THe ReqUIReMeNTS

on the left of Figure 3 you can see the use-case slice, this is a slice taken from one of the use cases shown in
the next column. The slice then continues through the design showing the design elements involved, and
through the implementation where you can see which pieces of the code actually implement the slice. Finally
the slice cuts through the test assets, not just encompassing the test cases, but also the test scripts used to
execute the test cases and the test results generated.

As well as providing traceability from the requirements to the code and tests, thinking of the slices in this way
helps you develop the right system. When you come to implement a slice you need to understand the impact
that the slice will have on the design and implementation of the system. Does it need new system elements to
be introduced? Can it be implemented by just making changes to the existing elements? If the impact is too
great you may even decide not to implement the slice! If you have the basic design for the system this kind
of analysis can be done easily and quickly, and provides a great way to understand the impact of adding the
slice to the system.

USE-CASE 2.0 The Definitive Guide Page 9
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

by addressing each aspect of the system slice by slice, use cases help with all the different areas of the system
including user experience (user interface), architecture, testing, and planning. They provide a way to link the
requirements to the parts of the system that implement them, the tests used to verify that the requirements
have been implemented successfully, and the release and project plans that direct the development work. In
Use-Case 2.0 there is a special construct, called the use-case realization, which is added to each use case to
record its impact on the other aspects of the system.

Use-Case Slices: The most important part of Use-Case 2.0
The concept of a use-case slice is as integral to Use-Case 2.0 as the use case itself. It is the slices that enable
the use cases to be broken down into appropriately sized pieces of work for the development team to tackle.
Imagine that you are part of a small team producing working software every two weeks. A whole use case is
probably too much to be completed in one two-week period. A use-case slice though is another matter be-
cause it can be sliced as thinly as the team requires. Use-case slices also allow the team to focus on providing
a valuable, usable system as soon as possible, shedding all unnecessary requirements on the way.

Principle 5: Deliver the system in increments
Most software systems evolve through many generations. They are not produced in one go; they are con-
structed as a series of releases each building on the one before. Even the releases themselves are often not
produced in one go, but are evolved through a series of increments. Each increment provides a demonstrable
or usable version of the system. Each increment builds on the previous increment to add more functionality
or improve the quality of what has come before. This is the way that all systems should be produced.

The use cases themselves can also be too much to consider delivering all at once. For example, we probably
don’t need all the ways of placing a local call in the very first increment of a telephone system. The most basic
facilities may be enough to get us up and running. The more optional or niche ways of placing a local call such
as reversing the charges or redialing the last number called can be added in later increments. by slicing up the
use cases we can achieve the finer grained control required to maximize the value in each release.

Figure 4 shows the incremental development of a release of a system. The first increment only contains a
single slice: the first slice from use case 1. The second increment adds another slice from use case 1 and the
first slice from use case 2. Further slices are then added to create the third and fourth increments. The fourth
increment is considered complete and useful enough to be released.

USE-CASE 2.0 The Definitive Guide Page 10
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

FIGURe 4: USe CASeS, USe-CASe SlICeS, INCReMeNTS, AND ReleASeS

Use cases are a fabulous tool for release planning. Working at the use-case level allows whole swathes of re-
lated requirements to be deferred until the later releases. by making decisions at the use-case level you can
quickly sketch out the big picture and use this to focus in on the areas of the system to be addressed in the
next release.

Use-case diagrams, showing which use cases are to be addressed in this release and which are to be left until a
later release, are a great tool for illustrating the team’s goals. They clearly show the theme of each release and
look great pinned up on the walls of your war-room for everybody to see.

Use-case slices are a fabulous tool for building smaller increments on the way to a complete release. They al-
low you to target independently implementable and testable slices onto the increments ensuring that each
increment is larger than, and builds on, the one before.

Principle 6: Adapt to meet the team’s needs
Unfortunately there is no ‘one size fits all’ solution to the challenges of software development; different teams
and different situations require different styles and different levels of detail. regardless of which practices and
techniques you select you need to make sure that they are adaptable enough to meet the ongoing needs of
the team.

This applies to the practices you select to share the requirements and drive the software development as
much as any others. For example lightweight requirements are incredibly effective when there is close col-
laboration with the users, and the development team can get personal explanations of the requirements and
timely answers to any questions that arise. If this kind of collaboration is not possible, because the users are
not available, then the requirements will require more detail and will inevitably become more heavyweight.
There are many other circumstances where a team might need to have more detailed requirements as an
input to development. however, what’s important is not listing all of the possible circumstances where a light-
weight approach might not be suitable but to acknowledge the fact that practices need to scale.

USE-CASE 2.0 The Definitive Guide Page 11
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

START UP
RELEASE
READY HANDOVER

FIRST
INCREMENT

SECOND
INCREMENT

THIRD
INCREMENT

FOURTH
INCREMENT

RELEASED
SYSTEM

RELEASE
CANDIDATE

SLICE 1.1 SLICE 1.1 SLICE 1.1 SLICE 1.1

SLICE 1.2 SLICE 1.2 SLICE 1.2

SLICE 2.1 SLICE 2.1 SLICE 2.1

SLICE 3.1 SLICE 3.1

SLICE 4.1 SLICE 4.1

SLICE 2.2

SLICE 3.2

SLICE 4.2USE CASE 1

USE CASE 2

USE CASE 3

USE CASE 4

Use-Case 2.0 is designed with this in mind, and is as light as you want it to be. Small, collaborative teams can
have very lightweight use-case narratives that capture the bare essentials of the stories. These can be hand
written on simple index cards. large distributed teams can have more detailed use-case narratives presented
as documents. It is up to the team to decide whether or not they need to go beyond the essentials, adding
detail in a natural fashion as they encounter problems that the bare essentials cannot cope with.

USE-CASE 2.0 The Definitive Guide Page 12
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

USE-CASE 2.0 The Definitive Guide Page 13
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case 2.0 Content
Use-Case 2.0 consists of a set of things to work with and a set of things to do.

Things to Work With
The subject of Use-Case 2.0 is the requirements, the system to be developed to meet the requirements, and the tests
used to demonstrate that the system meets the requirements. At the heart of Use-Case 2.0 are the use case, the story
and the use-case slice. These capture the requirements and drive the development of the system. Figure 5 shows how
these concepts are related to each other. It also shows how changes and defects impact on the use of Use-Case 2.0.

FIGURe 5: USe-CASe 2.0 CoNCePT MAP.

The stakeholders are the people, groups, or organizations who affect or are affected by a software system. The requirements are
what the system must do to satisfy the stakeholders. It is important to discover what is needed from the software system, share
this understanding among the stakeholders and the team members, and use it to drive the development of the new system.
In Use-Case 2.0 the requirements are captured as a set of use cases, which are scope managed and addressed as a set of use-
case slices. Any changes requested by the stakeholders result in additions or changes to the set of use cases and use-case slices.

STAKEHOLDERS

MAY ASK FOR

CHANGE

REQUIREMENTS

USE CASE

USE-CASE SLICE

CAPTURED AS

SYSTEM

TEST

DEFECT

SCOPE MANAGED
AND ADDRESSED

AS A SET CF

STORY

ARE THE
SOURCE OF

ADD OR
CHANGE

MAY
REQUIRE

NEW

HELP TO
IDENTIFY

ARE INVOLVED IN
AND PRIORITIZE

COMMUNICATE
BY TELLING

EXPLORED
BY TELLING

VERIFY THE
IMPLEMENTATION OF

IMPLEMENTED BY

SCOPE AND GOALS
MODELED AS A SET OF

DRIVE THE
DEVELOPMENT OF

VERIFIES THE
QUALITY AND

COMPLETENESS OF
PREVENTS THE

COMPLETION OF FIND

FIXED BY
IMPROVING

USE-CASE 2.0 The Definitive Guide Page 14
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

The system is the system to be built. It is typically a software system although Use-Case 2.0 can also be used in
the development of new businesses (where you treat the business itself as a system), and combined hardware
and software systems (embedded systems). It is the system that implements the requirements and is the sub-
ject of the use-case model. The quality and completeness of the system is verified by a set of tests. The tests
also verify whether or not the implementation of the use-case slices has been a success. If defects are found
during the testing then their presence will prevent the completion of the use-case slice until they have been
fixed and the system improved.

Telling stories bridges the gap between the stakeholders, the use cases and the use-case slices. It is how the
stakeholders communicate their requirements and explore the use cases. Understanding the stories is also
the mechanism for finding the right use-case slices to drive the implementation of the system.

Use Cases
A use case is all the ways of using a system to achieve a particular goal for a particular user. Taken together the
set of all the use cases gives us all of the useful ways to use the system.

A use case is:

• A sequence of actions a system performs that yields
 an observable result of value to a particular user.
• That specific behavior of a system, which partici-
 pates in a collaboration with a user to deliver
 something of value for that user.
• The smallest unit of activity that provides a mean-
 ingful result to the user.
• The context for a set of related requirements.

To understand a use case we tell stories. The stories cover
both how to successfully achieve the goal and how to han-
dle any problems that occur on the way. They help us to un-
derstand the use case and implement it slice by slice.

As Figure 6 shows, a use case undergoes several state
changes from its initial identification through to its fulfill-
ment by the system. The states constitute important way
points in the understanding and implementation of the use
case indicating:

1) Goal Established: when the goal of the use case has
 been established.

2) Story Structure Understood: when the structure of
 the use-case narrative has been understood enough
 for the team to start work identifying and imple-
 menting the first use-case slices. FIGURe 6: THe lIFeCyCle oF A USe CASe

GOAL
ESTABLISHED

STORY STRUCTURE
UNDERSTOOD

SIMPLEST STORY
FULFILLED

SUFFICIENT STORIES
FULFILLED

ALL STORIES
FULFILLED

USE-CASE 2.0 The Definitive Guide Page 15
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

3) Simplest Story Fulfilled: when the system fulfills the simplest story that allows a user to achieve the
 goal.

4) Sufficient Stories Fulfilled: when the system fulfills enough of the stories to provide a usable solution.

5) All Stories Fulfilled: when the system fulfills all the stories told by the use case.

This will be achieved by implementing the use case slice-by-slice. The states provide a simple way assess the
progress you are making in understanding and implementing the use case.

Use-Case Slices
Use cases cover many related stories of varying importance and priority. There are often too many stories to
deliver in a single release and generally too many to work on in a single increment. because of this we need a
way to divide the use cases into smaller pieces that 1) allow us to select which pieces of the use case to deliver
when, 2) provide a suitable unit for development and testing by the development team, and 3) allow us to
have small and similarly sized pieces of work that flow quickly through development.

A use-case slice is one or more stories selected from a use case to form a work item that is of clear value to the
customer. It acts as a placeholder for all the work required to complete the implementation of the selected
stories. As we saw earlier when we discussed how the use-case slices are more than just requirements and test
cases, the use-case slice evolves to include the corresponding slices through design, implementation and test.

The use-case slice is the most important element of Use-Case 2.0,
as it is not only used to help with the requirements but to drive
the development of a system to fulfill them.

Use-case slices:

• Enable use cases to be broken up into smaller,
 independently deliverable units of work.
• Enable the requirements contained in a set of use
 cases to be ordered, prioritized and addressed in
 parallel.
• link the different system models (requirements,
 analysis, design, implementation and test) used in
 use-case driven development.

As Figure 7 shows, a use-case slice undergoes several state chang-
es from its initial identification through to its final acceptance. The
states constitute important way points in the understanding, im-
plementation and testing of the use-case slice indicating:

1) Scoped: when it has been scoped and the extent of
 the stories covered has been clarified.

2) Prepared: when the slice has been prepared by enhancing
 the narrative and test cases to clearly define what it means
 to successfully implement the slice.

FIGURe 7:
THe lIFeCyCle oF A USe-CASe SlICe

SCOPED

PREPARED

ANALYZED

IMPLEMENTED

VERIFIED

USE-CASE 2.0 The Definitive Guide Page 16
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

3) Analyzed: when the slice has been analyzed so its impact on the components of the system is under-
 stood and the pieces affected are ready for coding and developer testing.

4) Implemented: when the software system has been enhanced to implement the slice and the slice is
 ready for testing.

5) verified: and finally when the slice has been verified as done and is ready for inclusion in a release.

The states provide a simple way to assess the progress you are making in understanding and implementing
the use-case slices. They also denote the points when the slice is at rest and could potentially be handed over
from one person or team to another. To the casual observer glancing at the states, this might look like a wa-
terfall process: scoping>preparation>analysis>implementation>verification. There’s a big difference, though.
In a waterfall approach, all the requirements are prepared before the analysis starts, and all the analysis is
completed before the implementation starts, and all the implementation is completed before the verification
starts. here we are dealing with an individual use-case slice. Across the set of slices all the activities could be
going on in parallel. While one use-case slice is being verified, another use-case slice is being implemented, a
third is being implemented, and a fourth being analyzed. In the next chapter we will explore this more when
we look at using Use-Case 2.0 with different development approaches.

Stories
Telling stories is how we explore the use cases with our stakeholders. Each story of value to the users and
other stakeholders is a thread through one of the use cases. The stories can be functional or non-functional
in nature.

A story is described by part
of the use-case narrative, one
or more flows and special re-
quirements, and one or more
test cases. The key to finding
effective stories is to under-
stand the structure of the use-
case narrative. The network of
flows can be thought of as a
map that summarizes all the
stories needed to describe the
use case. Figure 8 illustrates the
relationship between the flows
of a use-case narrative and the
stories it describes.

on the left of the figure the basic flow is shown as a linear sequence of steps and the alternative flows are
shown as detours from this set of steps. The alternative flows are always defined as variations on the basic. on
the right of the diagram some of the stories covered by the flows are shown. Each story traverses one or more
flows starting with the use case at the start of the basic flow and terminating with the use case at the end of
the basic flow. This ensures that all the stories are related to the achievement of the same goal, are complete
and meaningful, and are complementary as they all build upon the simple story described by the basic flow.
For each story there will be one or more test cases.

1 USE CASE

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

START OF USE CASE

END OF USE CASE

MANY STORIES..

ALT 1

ALT 3

ALT 2

FIGURe 8:
THe RelATIoNSHIP BeTWeeN THe FloWS AND THe SToRIeS

USE-CASE 2.0 The Definitive Guide Page 17
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

There are two common approaches to identifying the stories and creating the use-case narrative:

· Top Down: Some people like to take a top down approach where they 1) identify the use case, 2) out-
 line the steps of the basic flow, and 3) brain-storm alternative flows based on the basic flow. This struc-
 tures the narrative and allows them to identify their stories.

· Bottom Up: Using the bottom up approach we start by brainstorming some stories and then grouping
 these by theme to identify our use cases. The set of stories are then examined to help us identify the
 basic and some of the alternative flows. The use-case structure then leads us to identify any missing
 stories and make sure that all the stories are well-formed and complementary.

You should pick the approach that works best for your stakeholders. You can of course combine the two ap-
proaches and work both top down, from your use cases, and bottom up from any suggested new stories.

The stories are a useful thinking tool to help us find the right use-case slices and, most importantly, the right
test cases. We don’t need to track the state of the stories themselves as it is the execution of the test cases
that shows us how complete the system is, and the progress of the use cases and use-case slices that drive the
development.

Defects and Changes
Although not a direct part of Use-Case 2.0, it is important to understand how defects and changes are related
to the use cases and the use-case slices.

Changes requested by the stakeholders are analyzed against the current use-case model, use cases, and use-
case slices. This enables the extent of the change to be quickly understood. For example adding a new use
case to the system is a major change as it changes the system’s overall goals and purpose; whereas a change
to an existing use case is typically much smaller, particularly if it is to a story that has not been allocated to a
slice and prepared, analyzed, implemented or verified.

Defects are handled by tracking which use-case slices, and by implication which test cases, resulted in their
detection. If they are found during the implementation or verification of a use-case slice then that slice cannot
advance until the defect is addressed and the test can be passed. If they are found later during regression test-
ing then the relationship between the failed test cases and the use cases allows you to quickly discern what
impact the defect will have on the users and the usability of the system.

USE-CASE 2.0 The Definitive Guide Page 18
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Work Products
The use cases and the use-case slices are supported by a number of work products that the team uses to help
share, understand, document them. Figure 9 shows the five Use-Case 2.0 work products (in blue) and their
relationships to the requirements, use cases, use-case slices, stories, tests, and the system (in yellow).

FIGURe 9: THe USe-CASe 2.0 WoRK PRoDUCTS

REQUIREMENTS

CAPTURED AS

SCOPE MANAGED AND
ADDRESSED AS A SET OF

USE CASE

SYSTEM

TEST

IMPLEMENTED
BY

USE-CASE SLICE VERIFIES THE
QUALITY AND

COMPLETENESS OF

STORY

USE-CASE MODEL

COMPLEMENTED
BY

VISUALIZED AS

SYSTEM-WIDE
REQUIREMENTS

DEFINITIONS

DEFINES AND
CONTEXTUALIZES

EXPLORED
BY TELLING

SPECIAL
REQUIREMENTS

FLOWS

DETAILED BY
A SET OF

USE-CASE
NARRATIVE

DESCRIBED
BY

REFERENCES

OUTLINE

INFLUENCE

INFLUENCE

ASSIGNED
TO

FLOWS, SPECIAL REQUIREMENT AND SYSTEM-WIDE
REQUIREMENTS ARE GROUPED INTO STORIES AND ASSIGNED TO
SLICES FOR ELABORATION, ANALYSIS, DESIGN AND TESTING.. THE
STORIES CAN BE EXPLICITLY LISTED AS PART OF THE USE-CASE
NARRATIVE OR TACTILY IMPLIED BY THE USE-CASE SLICES.

SCOPE & GOALS MODELED
AS A SET OF

USE-CASE
REALIZATION

EXPLAIN HOW THE
REQUIREMENTS

ARE HANDLED BY

COMPLETED
BY

TEST
CASE

VERIFIED BY
EXECUTING

EXECUTED
AS PART OF A

IMPACT ON
THE SYSTEM

EXPLAINED BY

SUPPORTING
INFORMATION

USE-CASE 2.0 The Definitive Guide Page 19
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

The use-case model visualizes the requirements as a set of use cases, providing an overall big picture of the
system to be built. The model defines the use cases and provides the context for the elaboration of the in-
dividual use cases. The use cases are explored by telling stories. Each use case is described by 1) a use-case
narrative that outlines its stories and 2) a set of test cases that complete the stories. The stories are described
as a set of flows. These can be complemented with a set of special requirements that will influence the stories,
help you assign the right stories to the use-case slices for implementation, and most importantly define the
right test cases.

The use-case model is complemented by supporting information. This captures the definitions of the terms
used in the use-case model and when outlining the stories in the use-case narratives. It also captures any
system-wide requirements that apply to all of the use cases. Again these will influence the stories selected
from the use cases and assigned to the use-case slices for implementation.

You may be disconcerted by the lack of any explicit work products to capture and document the stories and
the use-case slices. These are not needed as they are fully documented by the other work products. If required
you can list the stories related to a use case as an extra section in the use-case narrative but this is not essential.

Working with the use cases and use-case slices
As well as creating and tracking the work products, you will also need to track the states and properties of the
use cases and the use-case slices. This can be done in many ways and in many tools. The states can be tracked
very simply using post-it notes or spreadsheets. If more formality is required one of the many commercially
available requirements management, change management or defect tracking tools could be used.

USE-CASE 2.0 The Definitive Guide Page 20
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Figure 10 shows a use case and some of its slices captured on a set of post-it notes.

FIGURe 10: CAPTURING THe PRoPeRTIeS oF A USe CASe AND ITS SlICeS USING PoST-IT NoTeS

The use case shown is use-case ‘7 browse and Shop’ from an on-line shopping application. Slices 1 and 2 of the
use case are based on individual stories derived from the basic flow: ‘Select and buy 1 Product’ and ‘Select and
buy 100 Products’. Slice 3 is based on multiple stories covering the availability of the various support systems
involved in the use case. These stories cover a number of the alternative flows.

The essential properties for a use case are its name, state and priority. In this case the popular MoSCoW (Must,
Should, Could, Would) prioritization scheme has been used. The use cases should also be estimated. In this
case a simple scheme of assessing their relative size and complexity has been used.

The essential properties for a use-case slice are 1) a list of its stories, 2) references to the use case and the flows
that define the stories, 3) references to the tests and test cases that will be used to verify its completion, and 4)
an estimate of the work needed to implement and test the slice. In this example the stories are used to name
the slice and the references to the use case are implicit in the slices number and list of flows. The estimates
have been added later after consultation with the team. These are the large numbers towards the bottom
right of each post-it note. In this case the team has played planning poker to create relative estimates using
story points; 5 story points for slices 7.1 and 7.2, and 13 story points for slice 7.3 which the team believe will
take more than twice the effort of the other slices. Alternatively ideal days, t-shirt sizing (XS, S, M, l, Xl, XXl,
XXXl), or any other popular estimating technique could be used.

7.1 Select and Buy
1 Product

Flows: BF
Test: 1 Product,
default payment,
valid details

5

7.2 Select and Buy
100 Products

Flows: BF
Test: 100 Products,
default payment,
valid details

5

7.3 Support
Systems Unavailable

Flows: BF, Ag, A10,
A11, A12
Test: Select Product,
Provide Information,
Disconnect each system
in between 13

SHOPPER

7. Browse
and Shop

Priority: MUST
Release: 1
Size: Very Large
Complexity: High

A USE CASE AND ITS PROPERTIES
CAPTURED ON A POST-IT NOTE

SOME SLICES
FROM THE USE CASE
CAPTURED ON THEIR
OWN POST-IT NOTES

USE-CASE 2.0 The Definitive Guide Page 21
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

The use cases and the use-case slices should also be ordered so that the most important ones are addressed
first. Figure 11 shows how these post-its can be used to build a simple product back log on a white board.
reading from left to right you can see 1) the big picture illustrated by use-case diagrams showing the scope
of the complete system and the first release, 2) the use cases selected for the first release and some of their
slices which have been identified but not yet detailed and ordered, 3) the ordered list of slices ready to be
developed in the release and finally 4) those slices that the team have successfully implemented and verified.

FIGURe 11: USING USe CASeS AND USe-CASe SlICeS To BUIlD A PRoDUCT BACKloG

Figure 11 is included for illustrative purposes only, there are many other ways to organize and work with
your requirements. For example many teams worry about their post-it notes falling off the whiteboard. These
teams often track the state of their use cases and use-case slices using a simple spreadsheet including work-
sheets such as those shown in Figure 12 and Figure 13.

FIGURe 12: THe USe-CASe WoRKSHeeT FRoM A SIMPle USe-CASe TRACKeR

USE CASE NAME RELEASE PRIORITY STATE SIZE COMPLEXITY

7

14

17

12

13

16

11

1

2

3

4

BROWSE AND SHOP

GET NEW AND SPECIAL OFFERS

MAINTAIN PRODUCTS & AVAILABILITY

TRACK ORDERS

LOCATE STORE

SET PRODUCT OFFERS

GET SHOPPING HISTORY

BUILD HOUSE

DESIGN INTERIOR

BUILD GARDEN

FILL GARDEN

1

1

1

1

1

1

1

1 - MUST

1 - MUST

1 - MUST

2 - SHOULD

2 - SHOULD

2 - SHOULD

3 - COULD

STORY STRUCTURE UNDERSTOOD

STORY STRUCTURE UNDERSTOOD

STORY STRUCTURE UNDERSTOOD

STORY STRUCTURE UNDERSTOOD

STORY STRUCTURE UNDERSTOOD

STORY STRUCTURE UNDERSTOOD

STORY STRUCTURE UNDERSTOOD

GOAL ESTABLISHED

GOAL ESTABLISHED

GOAL ESTABLISHED

GOAL ESTABLISHED

VERY LARGE

MEDIUM

LARGE

LARGE

SMALL

MEDIUM

SMALL

HIGH

MEDIUM

HIGH

LOW

LOW

HIGH

MEDIUM

USE-CASE 2.0 The Definitive Guide Page 22
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

FIGURe 13: THe USe-CASe SlICe WoRKSHeeT FRoM A SIMPle USe-CASe TRACKeR

These illustrations are included to help you get started. The use cases and the use-case slices are central to ev-
erything the team does, so use whatever techniques you need to make them tangible and visible to the team.
Feel free to add other attributes as and when you need them, for example to record the source of the use case
or its owner, or to target the use-case slices on a particular increment within the release.

Completing the Work Products
As well as tracking the use cases and the use-case slices you will need to, at least, sketch out and share the
supporting work products.

All of the work products are defined with a number of levels of detail. The first level of detail defines the bare
essentials, the minimal amount of information that is required for the practice to work. Further levels of de-
tail help the team cope with any special circumstances they might encounter. For example, this allows small,
collaborative teams to have very lightweight use-case narratives defined on simple index cards and large dis-
tributed teams to have more detailed use-case narratives presented as documents. The teams can then grow
the narratives as needed to help with communication, or thoroughly define the important or safety critical
requirements. It is up to the team to decide whether or not they need to go beyond the essentials, adding
detail in a natural fashion as they encounter problems that the bare essentials cannot cope with.

Figure 14 shows the levels of detail defined for the set of Use-Case 2.0 work products. The lightest level of
detail is shown at the top of the table. The amount of detail in the work product increases as you go down the
columns enhancing and expanding the content.

FIGURe 14: WoRK PRoDUCT levelS oF DeTAIl

USE CASE SLICE STORIES FLOW TEST CASES STATE ORDER

7

7

7

17

1

2

2

7

7

17

7

5

5

1

BROWSE AND SHOP

BROWSE AND SHOP

BROWSE AND SHOP

MAINTAIN PRODUCTS AND AVAILABILITY

BUILD HOUSE

DESIGN INTERIOR

DESIGN INTERIOR

BROWSE AND SHOP

BROWSE AND SHOP

MAINTAIN PRODUCTS AND AVAILABILITY

BROWSE AND SHOP

WALK THROUGH DESIGN

WALK THROUGH DESIGN

BUILD HOUSE

7.1

7.2

7.4

17.1

1.1

2.1

2.4

7.5

7.6

17.2

7.7

5.1

5.2

1.2

BF

BF

A4, A5, A6

BF

BF

BF, A3

A6

A9, A11, A12

A7

A2, A3

A14

BF, A1

A2

A2, A5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

1

1

1

1

1

1

1

1

1

1

1

1

1

13

13

3

20

5

5

3

5

13

5

20

8

2

1

7.1.1

7.2.1, 7.2.3

7.3.1, 7.3.2

17.1.1, 17.1.2

1.1.1, 1.1.2, 1.1.3

1.2.1, 1.2.2, 1.2.3

PREPARED

PREPARED

SCOPED

SCOPED

SCOPED

VERIFIED

SCOPED

SCOPED

SCOPED

SCOPED

SCOPED

SCOPED

SCOPED

SCOPED

SELECT AND BUY 1 PRODUCT

SELECT AND BUY MANY PRODUCTS

HANDLE PAYMENT AND DELIVERY DETAILS

CREATE NEW PRODUCT

ADD FIRST HOUSE

DESIGN ROOM

PURCHASE CONTENTS

HANDLE LOSS OF KEY SUPPORT SYSTEMS

PRODUCT OUT OF STOCK

HANDLE PRODUCT DETAIL ERRORS

QUIT SHOPPING

NAVIGATE DESIGN

HANDLE NAVIGATION ERRORS

ADD OR REMOVE FLOOR

(STORY POINTS) RELEASE
ESTIMATE TARGET

USE-CASE MODEL USE-CASE NARRATIVE USE--CASE REALIZATION TEST CASE SUPPORTING
 INFORMATION

SKETCH:

BARE ESSENTIALS:

ENHANCED:

EXPANDED:

FURTHER EXPANDED:

BRIEFLY DESCRIBED

BULLETED OUTLINE

ESSENTIAL OUTLINE

FULLY DESCRIBED

TEST IDEAS
FORMULATED

SCENARIO CHOSEN

VARIABLES IDENTIFIED

VARIABLES SET

SCRIPTED
/AUTOMATED

OUTLINED

SIMPLY DEFINED

MODELLED
& ILLUSTRATED

COMPREHENSIBLY
DEFINED

VALUE ESTABLISHED

SYSTEM BOUNDARY
ESTABLISHED

STRUCTURED

IMPLEMENTATION
ELEMENTS IDENTIFIED

RESPONSIBILITIES
ALLOCATED

INTERACTION DEFINED

USE-CASE 2.0 The Definitive Guide Page 23
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

The good news is that you always start in the same way, with the bare essentials. The team can then continu-
ally adapt the level of detail in their use-case narratives to meet their emerging needs. The level of detail can
also be adjusted to reduce waste; anything beyond the essentials should have a clear reason for existing or be
eliminated. As Einstein (is attributed to have) said “Everything should be made as simple as possible, but not
simpler”.

For more information on the work products and their levels of detail see Appendix 1: Work Products.

Things to do
Use-Case 2.0 breaks the work up into a number of essential activities that need to be done if the use cases are
to provide real value to the team. These activities are shown in Figure 13 where they are grouped into those
activities used to discover, order and verify the requirements, and those used to shape, implement and test
the system. The solid chevrons indicate activities that are explicitly defined by the practice. The dashed chev-
rons are placeholders for other activities that the practice depends on to be successful. Use-Case 2.0 does not
care how these activities are performed, it just needs them to be done.

FIGURe 15: THe ACTIvITIeS IN USe-CASe 2.0

read Figure 15 from left to right to get an impression of the order in which the activities are first performed.
The activities themselves will all be performed many times in the course of your work. Even a simple activity
such as ‘Find Actors and Use Cases’ may need to be performed many times to find all the use cases, and may
be conducted in parallel with, or after, the other activities. For example, whilst continuing to ‘Find Actors and
Use Cases’ you may also be implementing some of the slices from those use cases found earlier.

The rest of this chapter provides an introduction to each of the activities, following the journey of a use-case
slice from the initial identification of its parent use case through to its final testing and inspection. The next
chapter includes a brief discussion on how to organize the activities to support different development ap-
proaches such as Scrum, Kanban, Iterative and Waterfall.

FIND ACTORS
AND USE CASES

SLICE THE
USE CASES

INSPECT AND ADAPT
THE USE CASES

TEST THE SYSTEM
(AS A WHOLE)

TO DISCOVER, ORDER AND VERIFY THE REQUIREMENTS

PREPARE A
USE-CASE SLICE

ANALYZE A
USE-CASE SLICE

IMPLEMENT SOFTWARE
(FOR A SLICE)

TEST THE SYSTEM
(AS A WHOLE)

TO SHAPE, IMPLEMENT AND TEST THE SYSTEM SLICE-BY-SLICE

USE-CASE 2.0 The Definitive Guide Page 24
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Find Actors and Use Cases
First you need to find some actors and use cases to help you to:

• Agree on the goals of the system.
• Agree on new system behavior.
• Scope releases of the system.
• Agree on the value the system provides.
• Identify ways of using and testing the system.

The best way to do this is to hold a use-case modeling
workshop with your stakeholders. There is no need to find
all the system’s use cases, just focus on those that are go-
ing to provide the stakeholders with the value they are
looking for. other actors and use cases will be found as
you inspect and adapt the use cases.

As the use cases are discovered they should be ordered to
support the team’s release plans. one of the great things
about use cases is that they enable high-level scope man-
agement without the need to discover or author all the
stories. If a use case isn’t needed then there is no need to
discuss or document its stories. If the use case is in scope it
should be outlined so that there is enough information to
start the slicing process.

repeat this activity as necessary to evolve your model and
find any missing actors or use cases.

TIP: MODEL STORM TO KICK
START YOUR USE-CASE MODEL

The formal nature of the use-case model, and its
use of the Uni�ed Modeling Language, can be a
barrier to involving stakeholders in the
modelling e�ort.

A great way to overcome this is to simply get the
stakeholders together to brainstorm some
di�erent users and their goals using
post-it-notes (vertical for users and horizontal
for goals.) Then facilitate the grouping of these
into actors and use cases, which the stakehold-
ers will then �nd it very easy to quantify, outline,
and order.

USE-CASE 2.0 The Definitive Guide Page 25
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Slice the Use Cases
next you need to create your first use-case slices. You do this to:

• Create suitably sized items for the team to work on.
• Fit within the time and budget available.
• Deliver the highest value to the users, and other stakeholders.
• Demonstrate critical project progress or understanding of needs.

Even the simplest use case will cover multiple stories.
You need to slice the use cases to select the stories to
be implemented. You should do the slicing with your
stakeholders to make sure that all the slices created are
of value and worth implementing. Don’t slice up all the
use cases at once. Just identify enough slices to meet
the immediate needs of the team.

You don’t need to completely slice up the use cases, just
pull out the slices that are needed to progress the work
and leave the rest of the stories in the use cases for slic-
ing when and if they are needed. You can even adopt
a pull model where the developers ask for new slices
to be identified as and when they have the capacity to
implement them.

The slices created should be ordered for delivery to
make sure the development team tackles them in the
right order. Again, you should do this with your stake-
holders and other team members to make sure that the
ordering defines the smallest usable system possible.
The best way to do this is to consider the combination
of priority, value, risk and necessity.

repeat this activity whenever new slices are needed.

TIP: YOU ONLY NEED THE
BASIC FLOW OF THE MOST
IMPORTANT USE CASE TO
CREATE YOUR FIRST SLICE

Many people think that they need to have
outlined all the use cases before they can start
to create their slices. This leads to the adoption
of a waterfall approach that delays the creation
of valuable, working software.

One slice from one use case is enough to get the
team started on the development and testing of
the system.

The �rst slice should always be based on the
basic �ow. For some complex systems this slice
may not even cover the whole of the �ow. You
may just take a sub-set of the basic �ow,
skipping the detail of some steps snd stubbing
up the solution for others, to attack the biggest
challenges in implementing the use case and
learn whether or not it can be implemented.

USE-CASE 2.0 The Definitive Guide Page 26
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Prepare a Use-Case Slice
once a slice is selected for development more work is required to:

• Get it ready for implementation.
• Clearly define what it means to successfully implement the slice
• Define required characteristics (i.e. non-functional requirements).
• Focus the development of software towards the tests it must meet.

Preparing a use-case slice is a collaborative activity,
you need input from the stakeholders, developers,
and testers to clarify the use-case narrative and de-
fine the test cases.

When preparing a use-case slice you should focus
on the needs of the developers and testers who will
implement and verify the slice. Think about how
they will access the information they need. Will they
be able to talk to subject matter experts to flesh out
the stories, or will they need everything to be docu-
mented for them? You also need to balance the work
between the detailing of the use-case narrative and
the detailing of the test cases. The more detail you
put in the use-case narrative the easier it will be to
create the test cases. on the other hand the lighter
the use-case narrative the less duplication and rep-
etition there will be between it and the test cases.
You should create the use-case narrative and the test
cases at the same time, so that the authors can bal-
ance their own needs, and those of their stakeholders. There may still be work to do if the test cases are to be
automated but there will be no doubt about what needs to be achieved by a successful implementation.

Perform this activity at least once for each slice. repeat this activity whenever there are changes applied to
the slice.

TIP: IF THE SLICE HAS NO TEST
CASES THEN IT HAS NOT BEEN
PROPERLY PREPARED

When you prepare a use-case slice do not forget
to de ne the test cases that will be used to verify
it. It is by looking at the test cases that we know
what really needs to be achieved.

The test cases provide the developers with an
empirical statement of what the system needs
to do. They will know that the development of
the slice is not completed until the system
successfully passes all the test cases.

USE-CASE 2.0 The Definitive Guide Page 27
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Analyze a Use-Case Slice
before you start coding you should analyze the slice to:

• Understand its impact on the system elements that will be used to implement it.
• Define the responsibilities of the affected system elements.
• Define how the system elements interact to perform the use case.

When a team is presented with a new slice to implement
the first thing to do is to work out how it will affect the
system. how many bits of the system are going to need
to be changed and in what way? how many new things
are needed and where do they fit?

Analyzing the target slices is often a pre-cursor to the
planning of the development tasks. It allows the team to
plan the implementation of the slice as a set of smaller
code changes rather than as one, large, indivisible piece
of work. Alternatively, the slice itself can be used as the
unit of work and analyzing the slice is just the final thing
to be undertaken by the developer before the coding
starts.

As the team build their understanding of the system
and its architecture they will find it easier and easier
to analyze the slices, and will often be able to do it in
their heads. It is still worth sketching the analysis out
with some colleagues before committing to the coding.
This will validate a lot of the design decisions, check that nothing has been misunderstood, and provide trace-
ability for use later when investigating the impact of defects and changes. The result of this kind of analysis is
known as a use-case realization as it shows how the use case is realized by the elements of the implementing
system.

Perform this activity at least once for each slice. repeat this activity whenever there are changes applied to
the slice.

TIP: KEEP THE ANALYSIS
COLLABORATIVE AND
LIGHTWEIGHT

The easiest way to analyze the use-case slice is
to get the team together to discuss how it
would a�ect the various elements of the system.

As the team walks-through the design they
picture it on a white board, typically in the form
of a simple sequence or collaboration diagram,
which can then be captured as a photograph or
in the team’s chosen modelling tool.

USE-CASE 2.0 The Definitive Guide Page 28
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Implement Software (for a Slice)
You are now ready to design, code, unit test, and integrate the software components needed to implement a
use-case slice.

The software will be developed slice-by-slice, with different team members working in parallel on different
slices. Each slice will require changes to one or more pieces of the system. To complete the implementation
of a slice the resulting pieces of software will have to be unit tested and then integrated with the rest of the
system.

Test the System (for a Slice)
next, independently test the software to verify that the use-case slice has been implemented successfully.
Each use-case slice needs to be tested before it can be considered complete and verified. This is done by suc-
cessfully executing the slice’s test cases. The independence of the use-case slices enables you to test it as soon
as it is implemented and provide immediate feedback to the developers.

Use-case 2.0 works with most popular testing practices. It can be considered a form of test-driven develop-
ment as it creates the test cases for each slice up-front before the slice is given to the developers for imple-
mentation.

Test the System as a Whole
Each increment of the software system needs to be tested to verify that it correctly implements all of the new
use-case slices without breaking any other parts of the system. It is not sufficient to just test each slice as it is
completed. The team must also test the system as a whole to make sure that all of the implemented slices are
compatible, and that the changes to the system haven’t resulted in the system failing to support any previ-
ously verified slices.

The test cases produced using Use-Case 2.0 are robust and resilient. This is because the structure of the use-
case narratives results in independently executable, scenario-based test cases.

USE-CASE 2.0 The Definitive Guide Page 29
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Inspect and Adapt the Use Cases
You also need to continuously tune and evaluate the use cases, and use-case slices to:

• handle changes.
• Track progress
• Fit your work within the time and budget available.
• Keep the use-case model up to date.
• Tune the size of the slices to increase throughput.

As the project progresses it is essential that you con-
tinually work with your use-case model, use cases and
use-case slices. Priorities change, lessons are learnt and
changes are requested. These can all have an impact
on the use cases and use-case slices that have already
been implemented, as well as those still waiting to be
progressed. This activity will often lead to the discovery
of new use cases and the refactoring of the existing use
cases and use-case slices.

The varying demands of the project may need you to
tune your use of Use-Case 2.0 and adjust the size of the
slices or the level of detail in your use-case narratives,
supporting definitions and test cases. It is important
that you continually inspect and adapt your way-of-
working as well as the use cases and use-case slices you
are working with.

Perform this activity as needed to maintain your use
cases and handle changes.

TIP: DON’T FORGET TO
MAINTAIN YOUR BACKLOG OF
USE-CASE SLICES

By ordering your slices and tracking their state
(scoped, prepared, analyzed, implemented,
veri�ed) you create a backlog of the
requirements left to implement. This list should
be continually monitored and adjusted to
re�ect the progress of the team and the desires
of the stakeholders.

As the project progresses you should monitor
and adjust the slice size to eliminate waste and
improve the team’s e�ectiveness.

USE-CASE 2.0 The Definitive Guide Page 30
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Using Use-Case 2.0
Use-Case 2.0 can be used in many different contexts to help produce many different kinds of system. In this
chapter we look at using use cases for different kinds of system, different kinds of requirements and different
development approaches.

Use-Case 2.0: Applicable for all types of system
Many people think that use cases are only applicable to user-intensive systems where there is a lot of interac-
tion between the human users and the system. This is strange because the original idea for use cases came
from telecom switching systems, which have both human users (subscribers, operators) and machine users,
in the form of other interconnected systems. Use cases are of course applicable for all systems that are used
– and that means of course all systems.

Use-Case 2.0: It’s not just for user-intensive applications
In fact use cases are just as useful for embedded systems with little or no human interaction as they are for
user intensive ones. nowadays, people are using use cases in the development of all kinds of embedded soft-
ware in domains as diverse as the motor, consumer electronics, military, aerospace, and medical industries.
Even real-time process control systems used for chemical plants can be described by use cases where each use
case focuses on a specific part of the plant’s process behavior and automation needs.

All that is needed for use cases to be appropriate is for the system to collaborate with the outside world, re-
gardless of whether the users are humans other systems. Their applicability is far broader than most people
think.

Use-Case 2.0: It’s not just for software development
The application of use cases is not limited to software development. They can also help you to understand
your business requirements, analyze your existing business, design new and better business processes, and
exploit the power of IT to transform your business. by using use cases recursively to 1) model the business and
its interactions with the outside world and 2) model the systems needed to support and improve the business
you can seamlessly identify where the systems will impact on the business and which systems you need to
support the business.

The use cases used to model the business are often referred to as business use cases. They provide the context
for your IT systems development work, allowing the business development and the IT development to be
carried out in perfect synchronization. not only can you develop the IT systems slice-by-slice but you can also
develop your business model slice-by-slice. This is very powerful as it allows you to evolve your business and
its supporting systems in tandem with one another, enabling incremental business development as well as
incremental systems development.

In the modern world the business and the IT systems that support it can, and should, be developed in synch
(one won’t work without the other). The use of use cases and use-case slices at both the business and IT
boundaries can close the gap between the business and the IT enabling them to work as truly collaborative
partners.

USE-CASE 2.0 The Definitive Guide Page 31
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case 2.0: handling all types of requirement
Although they are one of the most popular techniques for describing systems’ functionality, use cases are also
used to explore their non-functional characteristics. The simplest way of doing this is to capture them as part
of the use cases themselves. For example, relate performance requirements to the time taken between spe-
cific steps of a use case or list the expected service levels for a use case as part of the use case itself.

Some non-functional characteristics are more subtle than this and apply to many, if not all, of the use cases.
This is particularly true when building layered architectures including infrastructure components such as se-
curity, transaction management, messaging services, and data management. The requirements in these areas
can still be expressed as use cases – separate use cases focused on the technical usage of the system. We call
these additional use cases infrastructure use cases as the requirements they contain will drive the creation of
the infrastructure that the application will run on. These use cases and their slices can be considered as cross-
cutting concerns that will affect the behavior of the system when the more traditional functional use cases are
performed. For example a use case could be created to explore how the system will manage database transac-
tions including all of the different usage scenarios such as the schemes for data locking, data caching, commit
and roll-back. This use case would apply every time another use case retrieves or stores data in the system.

Combining these infrastructure use cases with other techniques such as separation of concerns and aspect-
oriented programming allows these common requirements to be addressed without having to change the
implementation of the existing functional use cases.

Use-Case 2.0: Applicable for all development approaches
Use-Case 2.0 works with all popular software development approaches including:

• backlog-driven iterative approaches such as Scrum, EssUP and openUP
• one-piece flow based approaches such as Kanban
• All-in-one go approaches such as the traditional Waterfall

In the following 3 short sections we will illustrate how Use-Case 2.0 and, in particular, use-case slices can help
with each of these. These sections are not as self contained as the rest of the document and rely upon the
reader having a basic understanding of the approach being discussed. We recommend that you only read the
sections for the approaches you are familiar with.

Use-Case 2.0 and backlog-driven iterations
before adopting any backlog-driven approach you must understand what items will go in the backlog. There
are various forms of backlog that teams use to drive their work including product backlogs, release backlogs,
and project backlogs. regardless of the terminology used they all follow the same principles. The backlog
itself is an ordered list list of everything that might be needed and is the single source of requirements for any
changes to be made. The basic concept of a backlog is illustrated by Figure 16.

USE-CASE 2.0 The Definitive Guide Page 32
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

FIGURe 16: A BASIC BACKloG

When you use Use-Case 2.0 the use-case slices are the primary backlog items. The use of use-case slices en-
sures that your backlog items are well-formed, as they are naturally independent, valuable and testable. The
structuring of the use-case narrative that defines them makes sure that they are estimable and negotiable,
and the use-case slicing mechanism enables you to slice them as small as you need to support your develop-
ment team.

The use cases are not put into the ordered list themselves as it is not clear what this would mean. Does it mean
that this is where the first slice from the use case would appear or where the last slice from the use case would
appear? If you want to place a use case into the list before slicing just create a dummy slice to represent the
whole use case and insert it into the list.

When you adopt a backlog-driven approach it is important to realize that the backlog is not built and com-
pleted up-front but is continually worked on and refined, something that is often referred to as grooming or
maintaining the backlog. The typical sequence of activities for a backlog-driven, iterative approach is shown
in Figure 17.

MOST
IMPORTANT

LEAST
IMPORTANT

WHERE THE TEAM WILL FINISH...

..AT ITS SLOWEST SPEED

..AT ITS AVERAGE SPEED

..AT ITS FASTEST SPEED

WHAT WILL BE DONE NEXT.

WHAT’S BEEN DONE}

BACKLOG

USE-CASE 2.0 The Definitive Guide Page 33
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

FIGURe 17: USe-CASe 2.0 ACTIvITIeS FoR ITeRATIve DeveloPMeNT APPRoACHeS

before the development starts the backlog is prepared; ‘Find Actors and Use Cases’ is used to build the initial
use-case model and scope the system, ‘Slice the Use Cases’ is used to create the initial set of most important
use-case slices to seed the backlog, and ‘Prepare Use-Case Slice’ is used to get one or more of these ready for
development in the first iteration.

once the backlog is up and running you can start the first development iteration. Every iteration starts with
some planning. During this planning you may need to use ‘Slice the Use Cases’ to further slice the selected
use-case slices to make sure they are small enough to complete in the iteration. The development team then
uses ‘Prepare a Use-Case Slice’, ‘Analyze a Use-Case Slice’, ‘Implement Software (for a slice)’, and ‘Test the System
(for a slice) to develop the identified slices and add them to the system.

While the development is on-going the team also uses ‘Inspect and Adapt the Use Cases’, ‘Slice the Use Cases’
and ‘Prepare a Use-Case Slice’ to maintain the backlog, handle change and make sure there are enough back-
log items ready to drive the next iteration. The team may even need to use ‘Find Actors and Use Cases’ to
handle major changes or discover more use cases for the team. In Scrum it is recommended that teams spend
5 to 10 per cent of their time maintaining their backlog. This is not an inconsiderable overhead for the team,
and Use-Case 2.0 provides the work products and activities needed to do this easily and efficiently.

Finally at the end of the iteration the team needs to demonstrate the system and reflect on their performance
during the iteration. The team should use ‘Test the System (as a whole)’ to understand where they are, and
‘Inspect and Adapt Use Cases’ to reflect on the quality and effectiveness of their use cases and use-case slices.

BEFORE
DEVELOPMENT

EVERY DEVELOPMENT ITERATION

}

FIND ACTORS
AND USE CASES

SLICE THE
USE CASES

PREPARE A USE-
CASE SLICE

SLICE
THE
USE

CASES

PLAN THE
TIME BOX

DEMON-
STRATE

AND
REFLECT

TEST THE
SYSTEM

(AS A
WHOLE)

INSPECT &
ADAPT THE
USE CASES

PREPARE
USE-CASE

SLICE

INSPECT &
ADAPT THE
USE CASES

SLICE THE
USE CASES

PREPARE A
USE-CASE

SLICE

FIND ACTORS
AND USE

CASES

ANALYZE
A USE-CASE

SLICE

IMPLEMENT
SOFTWARE

(FOR A SLICE)

TEST THE
SYSTEM

(FOR A SLICE)

DEVELOP AND TEST SLICES

MAINTAIN THE BACKLOGPREPARE THE BACKLOG

USE-CASE 2.0 The Definitive Guide Page 34
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case 2.0 and one-piece flow
one-piece flow is an approach that avoids the batching of the requirements seen in the iterative and waterfall
approaches. In a one-piece flow approach each requirements item flows through the development process.
one-piece flow is a technique taken from lean manufacturing. Figure 18 shows a small team engaging in one-
piece flow passing each item directly from work station A to b to C.

FIGURe 18: BASIC oNe-PIeCe FloW.

For this to work effectively you need small, regularly sized items that will flow quickly through the system. For
software development the requirements are the raw materials and working software is the finished goods.
Use cases would be too irregularly sized and too big to flow through the system. The time at stations A, b and C
would be too unpredictable and things would start to get stuck. Use-case slices though can be sized appropri-
ately and tuned to meet the needs of the team. Figure 19 illustrates one-piece flow for software development
with use-case slices.

FIGURe 19: oNe-PIeCe FloW FoR SoFTWARe DeveloPMeNT WITH USe-CASe SlICeS

As well as flowing quickly through the system, there needs to be enough items in the system to keep the team
busy. one-piece flow doesn’t mean that there is only one requirements item being worked on at a time or that
there is only one piece of work between one work station and the next. Work in progress limits are used to
level the flow and prevent any wasteful backlogs from building up.

one-piece flow doesn’t mean that individuals only do one thing and only work at one work station. For ex-
ample there could be more people working in Development than there are in Test, and if things start to get
stuck then the people should move around to do whatever they can to get things moving again. If there are
no use-case slices waiting to be tested but there are slices stuck in analysis then the testers can show some
initiative and help to do the preparation work. In the same way you are not limited to one person at each work
station, or even only one instance of each work station.

People icons © ioannis kounadeas / Fotolia

People icons © ioannis kounadeas / Fotolia

USE-CASE 2.0 The Definitive Guide Page 35
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Kanban boards are a technique for visualizing the flow through a production line. A Kanban is a sign, flag, or
signal within the production process to trigger the production and supply of product as part of just-in-time
and lean manufacturing. on a Kanban board Kanban cards are used to represent the items in the system. Fig-
ure 20 shows a simple Kanban board for a development team which first analyses each slice to understand
its impact, then develops and unit tests the software, and finally independently tests the resulting software
before putting it live.

FIGURe 20: USe-CASe SlICeS oN A KANBAN BoARD

The work in progress limits are shown in red. reading from left to right you can see that slices have to be
indentified and scoped before they are input to the team. here there is a work in progress limit of 5, and the
customers, product owner or business requirements team that are the source of the requirements try to keep
5 use-case slices ready for implementation at all times.

Slices are pulled from the input queue into the preparation area where impact analysis is undertaken, stories
clarified and the test cases finalized. here there is a work in progress limit of 3 items. Items in the on-going
column are currently being worked on. The items in the done column have had their preparation completed
and are waiting to be picked up by a developer. In this way the slices work their way through the development
team and after successfully passing the independent system testing go live. A work in progress limit covers all
the work at the station, including both the on-going and done items. There is no work in progress limit on the
output or the number of items that can go live.

An important thing to note about Kanban is that there is no definitive Kanban board or set of work in prog-
ress limits; the structure of the board is dependent on your team structure and working practices. You should
tune the board and the work in progress limits as you tune your practices. The states for the use-case slices
are a great aid to this kind of work design. Figure 21 shows the alignment between the states and the Kanban
board shown in Figure 20. The states are very powerful as they clearly define what state the slice should be in
when it is to be handed on to the next part of the chain.

ON-GOING DONE ON-GOING DONE ON-GOING DONE

INPUT PREPARATION DEVELOPMENT SYSTEM LIVE

5 3 4 3

USE-CASE 2.0 The Definitive Guide Page 36
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

FIGURe 21: AlIGNING THe STATeS oF THe USe-CASe SlICe To THe KANBAN BoARD

Figure 22 shows where the different Use-Case 2.0 activities are applied. The interesting thing here is that “In-
spect and Adapt Use Cases” is not the responsibility of any particular work station but is conducted as part of
the regular quality control done by the team. This activity will help the team to tune the number and type of
work stations they have as well as their work in progress limits.

FIGURe 22: USe-CASe 2.0 ACTIvITIeS FoR WATeRFAll APPRoACHeS

For example as a result of reviewing the team’s effectiveness you might decide to eliminate the preparation
work station and increase the work in progress limits for development and system test. Again you exploit the
states of the use-case slice to define what it means for each work station to have finished their work resulting
in the Kanban board shown in Figure 23.

ON-GOING DONE ON-GOING DONE ON-GOING DONE

INPUT PREPARATION DEVELOPMENT SYSTEM TEST

5 3 4 3

SCOPED PREPARED ANALYZED IMPLEMENTED VERIFIED

LIVE

INPUT PREPARATION DEVELOPMENT SYSTEM TEST LIVE

FIND ACTORS
& USE CASES

SLICE THE
USE CASES

PREPARE A
USE-CASE SLICE

ANALYZE A
USE-CASE SLICE

IMPLEMENT
SOFTWARE

(FOR A SLICE)

TEST THE
SYSTEM

(FOR A SLICE)

TEST THE SYSTEM
(AS A WHOLE)

INSPECT AND ADAPT
THE USE CASES

ACTIVITIES PERFORMED AT EACH WORKSTATION

PERFORMED REGULARLY AS PART OF THE QUALITY CONTROL

USE-CASE 2.0 The Definitive Guide Page 37
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

FIGURe 23: THe TeAM’S RevISeD KANBAN BoARD SHoWING CoMPleTIoN STATeS

Use-Case 2.0 and waterfall
For various reasons you may find that you need to develop your software within the constraints of some
form of waterfall governance model. This typically means that some attempt will be made to capture all the
requirements up-front before they are handed over to a third-party for development.

When you adopt a waterfall approach the use cases are not continually worked on and refined to allow the
final system to emerge but are all defined in one go at the start of the work. They then proceed in perfect syn-
chronization through the other development phases, all of which focus on one type of activity at a time. The
typical sequence of activities for a waterfall approach is shown in Figure 24.

FIGURe 24: USe-CASe 2.0 ACTIvITIeS FoR WATeRFAll APPRoACHeS

REQUIREMENTS
PHASE

ANALYSIS
PHASE

DESIGN
PHASE

DEVELOPMENT
PHASE

TEST
PHASE

FIND ACTORS
AND USE CASES

SLICE THE
USE CASES

PREPARE A USE-
CASE SLICE

FIND, PREPARE & SLICE
ALL THE USE CASES

INSPECT & ADAPT THE USE CASES PREPARE A USE-CASE SLICE

CONTROL CHANGE

TEST THE SYSTEM
(FOR A SLICE)

ANALYZE A USE-
CASE SLICE

ANALYZE A USE-
CASE SLICE

SHAPE THE
SYSTEM

SHAPE THE
SYSTEM

TEST THE SYSTEM
(AS A WHOLE)

IMPLEMENT
SOFTWARE

(FOR A SLICE)
TEST

EVERYTHING
IMPLEMENT

ALL THE SLICES
DESIGN THE

ENTIRE SYSTEM
ANALYZE ALL

THE USE CASES

ON-GOING DONE ON-GOING DONE

INPUT DEVELOPMENT SYSTEM TEST

5 7 5

SCOPED PREPARED ANALYZED IMPLEMENTED VERIFIED

LIVE

USE-CASE 2.0 The Definitive Guide Page 38
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Even within the strictest waterfall environment there are still changes happening during the development of
the software itself. rather than embrace and encourage change, waterfall projects try to control change. They
will occasionally ‘Inspect and Adapt the Use Cases’ when there is a change request that cannot be deferred,
and they will prepare additional use-case slices to handle any changes that are accepted. They are unlikely
to find any further use cases after the requirements phase as this would be considered too large a change in
scope.

The ‘one thing at a time’ nature of the waterfall approach means that the make-up of the team is continually
changing over time, and so the ability to use to face-to-face communication to share the stories is very limited.
To cope with this you need to turn up the level of detail on the work products, going way beyond the bare
essentials. Figure 25 shows the level of detail typically used on waterfall projects.

FIGURe 25: levelS oF DeTAIl FoR THe WoRK PRoDUCTS USING A WATeRFAll APPRoACH

Within each of the development phases one or more of the work products are progressed to a very high-level
of detail to ensure that they are 1) complete and 2) answer any and all questions that might arise during the
later phases. In the requirements phase the use-case model is worked and re-worked to make sure that all
the use cases have been discovered, all of the use-case narratives are fully described and the supporting in-
formation is comprehensively defined. At this stage some thought will be put into testing and the test ideas
formulated. The test cases are then put to one side until the test phase is reached.

The use cases and their supporting information are handed over to the analysis and design team who will
flesh out the use-case realizations first to assign responsibilities to the system elements and then to define
all the interactions. Eventually coding will start and all the use cases and use-case slices will be implemented.
Finally the testers will get involved and all the test cases will be defined in detail and testing will commence.

The sequential nature of this way-of-working may lead you to think that there is no role for use-case slices to
play, and that just handling the entire use cases would be enough. This is not true as the finer grained con-
trol provided by the use-case slices allows the requirements team to be much more specific about the actual
scope of the system to be built. Even in waterfall projects it is unlikely that you will need all of the stories from
all of the use cases. They will also help you to handle any last minute changes in scope caused by schedule or
quality problems.

USE-CASE MODEL USE-CASE NARRATIVE USE--CASE REALIZATION TEST CASE SUPPORTING
 INFORMATION

SKETCH:

BARE ESSENTIALS:

ENHANCED:

EXPANDED:

FURTHER EXPANDED:

BRIEFLY DESCRIBED

BULLETED OUTLINE

ESSENTIAL OUTLINE

FULLY DESCRIBED

TEST IDEAS
FORMULATED

SCENARIO CHOSEN

VARIABLES IDENTIFIED

VARIABLES SET

SCRIPTED
/AUTOMATED

OUTLINED

SIMPLY DEFINED

MODELLED
& ILLUSTRATED

COMPREHENSIBLY
DEFINED

VALUE ESTABLISHED

SYSTEM BOUNDARY
ESTABLISHED

STRUCTURED

IMPLEMENTATION
ELEMENTS IDENTIFIED

RESPONSIBILITIES
ALLOCATED

INTERACTION DEFINED

USE-CASE 2.0 The Definitive Guide Page 39
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case 2.0 – It’s not just for one type of team
Another important aspect of Use-Case 2.0 is its ability to adapt to existing team structures and job functions
whilst encouraging teams to eliminate waste and increase efficiency. To this end Use-Case 2.0 does not pre-
define any particular roles or team structures, but it does define a set of states for each of the central elements
(the use case and the use-case slice).

As illustrated by the discussion on Use-Case 2.0 and one-piece flow, the states indicate when the items are at
rest and could be handed-over from one person or team to another. This allows the practice to be used with
teams of all shapes and sizes from small cross-functional teams with little or no handovers to large networks
of specialist teams where each state change is the responsibility of a different specialist. Tracking the states
and handovers of these elements allows the flow of work through the team (or teams) to be monitored, and
teams to adapt their way-of-work to continuously improve their performance.

Use-Case 2.0: Scaling to meet your needs – scaling in,
 scaling out and scaling up
no one, predefined approach fits everyone so we need to be able to scale our use of Use-Case 2.0 in a number
of different dimensions:

1. Use cases scale in to provide more guidance to less experienced practitioners (developers, analysts,
 testers, etc.) or to practitioners who want or need more guidance.
2. They scale out to cover the entire lifecycle, covering not only analysis, design, coding and test but also
 operational usage and maintenance.
3. They scale up to support large and very large systems such as systems of systems: enterprise systems,
 product lines, and layered systems. Such systems are complex and are typically developed by many
 teams working in parallel, at different sites, possibly for different companies, and reusing many legacy
 systems or packaged solutions.

regardless of the complexity of the system you are developing you always start in the same way by identify-
ing the most important use cases and creating a big picture summarizing what needs to be built. You can
then adapt Use-Case 2.0 to meet the emerging needs of the team. In fact Use-Case 2.0 insists that you con-
tinuously inspect and adapt its usage to eliminate waste, increase throughput and keep pace with the ever
changing demands of the team.

USE-CASE 2.0 The Definitive Guide Page 40
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Conclusion
Use-Case 2.0 exists as a proven and well-defined practice, one that is compatible with many other software
development practices such as Continuous Integration, Intentional Architecture, and Test-Driven Develop-
ment. It also works with all popular management practices. In particular it has the lightness and flexibility to
support teams that work in an agile fashion. It also has the completeness and rigor required to support teams
that are required to work in a more formal or waterfall environment.

Use-Case 2.0 is:

• lightweight – in both its definition and application.
• Scalable – and suitable for teams and systems of all sizes.
• versatile – and suitable for all types of systems and development approaches
• easy to use – use-case models can be quickly put in place and the slices created to meet the teams
 needs

Use-Case 2.0 is free and offered to the public in this guide. Use-Case 2.0’s ‘things to work with’ and ‘things to
do’ are non-negotiable, and although it is possible to only implement parts of Use-Case 2.0 the results are
indeterminate and the practice used will not be Use-Case 2.0.

This guide is deliberately kept lightweight and may not be sufficient for you to adopt the practice. Additional
information is available in the form of a fully documented, web-published practice from www.ivarjacobson.
com. This is offered as a stand-alone web-site or a plug in for EssWork.

This is the first of many publications on Use-Case 2.0, you can expect to see many other articles, white papers
and blogs on the subject published on www.ivarjacobson.com

USE-CASE 2.0 The Definitive Guide Page 41
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Appendix 1: Work Products
This appendix provides definitions and further information of the work products used by Use-Case 2.0.

The work products covered are:

· Supporting Information
· Test Case
· Use-Case Model
· Use-Case narrative
· Use-Case realization

USE-CASE 2.0 The Definitive Guide Page 42
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Supporting Information
The purpose of the supporting information is to capture important terms used to describe the system, and
any and all requirements that don’t fit inside the use-case model.

The supporting information:

· helps ensure a common understanding of the specified solution.
· Focuses on concepts and terms that need to be understood by everyone involved in the work, and in
 particular those terms referenced by the use cases.
· Captures those important global requirements and quality attributes that don’t relate to any single use
 case such as supported platforms and system availability.
· Details any standards that need to be followed. For example, coding, presentation, language, safety,
 and any other industry standards that apply to the system.
· helps to identify additional stories not readily identifiable directly from the use-cases, such as those
 that will be used to demonstrate the different platforms supported or the desired levels of availability.

The role of the supporting information is to support the evolution of the use cases and the implementation
of the use-case slices. Capture it to complement your use-case model and avoid miscommunication between
the team members. The information can come from many sources, such as other requirements documents,
specifications, and discussions with stakeholders and domain experts. You can also include domain, process
and other business models if they are a useful aid to understanding the use-case model and the system it
describes.

The supporting information can be documented at varying levels of detail ranging from a simple set of basic
definitions through to a comprehensive and fully described set of definitions, standards, and quality attri-
butes. The supporting information can be presented at the following levels of detail:

 Initiated: An intermediate level of detail that indicates what is included is just an outline of the most
 obvious terms and areas to be addressed.

 More detail will need to be added if the information is to support the successful identification and
 preparation of the right use-case slices.

 Simply Defined: All terms referenced by the use-case narratives must be defined and the system’s
 global quality attributes clearly specified. At this level of detail these are captured as simple lists of
 declarative statements such as those used in the glossary that accompanies this e-book.

This is the lightest level of detail, which provides support for the development of the use-case slices. It
also clarifies the global requirements of the system enabling the team to tell if the system implement-
ing the slices is truly usable and not just demonstrable. It is suitable for most teams, particularly those
that collaborate closely with their users and are able to fill in any missing detail by talking with them.

 Modeled and Illustrated: More detail can be added to the supporting information by transforming the
 basic definitions into models that precisely capture the definitions, their attributes and their relation
 ships, and providing real world examples to clarify things.

USE-CASE 2.0 The Definitive Guide Page 43
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

At this level of detail we go beyond simple definitions and start to use complementary techniques
such as business rule catalogues, information modeling and domain modeling. It is particularly use-
ful for supporting those use-case models where a misunderstanding of the requirements could have
severe safety, financial or legal consequences.

 Comprehensively Defined: Sometimes it is necessary to clarify the information by providing more de
 tailed explanations and support materials such as comprehensive examples, derivations and cross-
 references.

At this level of detail the supporting information becomes more complicated, with more precision,
cross-referencing and use of formal specification techniques.

The supporting information provides a central location to look for terms and abbreviations that may be new
to the team and to find the global quality attributes that everyone in the team should understand. It is an es-
sential complement to the use-case model itself. Without the supporting information it will be impossible to
understand what it means for the system to be usable and ready for use.

The supporting information is usually represented as a simple list of terms and their definitions. The list is
often split up into sections such as definitions of terms, business rules, operational constraints, design con-
straints, standards, and system-wide requirements. The list may be published as part of a Wiki site to simplify
access and maintenance.

USE-CASE 2.0 The Definitive Guide Page 44
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Test Case
The purpose of a test case is to provide a clear definition of what it means to complete a slice of the require-
ments. A test case defines a set of test inputs and expected results for the purpose of evaluating whether or
not a system works correctly.

Test cases:

• Provide the building blocks for designing and implementing tests.
• Provide a mechanism to complete and verify the requirements.
• Allow tests to be specified before implementation starts.
• Provide a way to assess system quality.

Test cases are an important, but often neglected, part of a use case. The test cases provide the true definition
of what it is that the system is supposed to do to support a use case. The test cases are particularly important
when we start to slice up the use cases as they provide the developers with a clear definition of what it means
to successfully implement a use-case slice.

Test cases can be used with many forms of requirements practice including use cases, user stories and declara-
tive requirements. In all cases the tester must be presented with a slice of requirements to test, one with a
clear beginning and end from which they can derive an executable test scenario.

Test cases can be presented at the following levels of details:

 Test Ideas Formulated: The lightest level of detail just captures the initial idea that will inform the test
 case. When defining a test case it needs to be clear what the idea behind the test case is, and which
 slice of the requirements it applies to.

More detail will need to be added if the test case is to be executable.

 Scenario Chosen: To be able to run a test case a tester must be presented with a test scenario to ex
 ecute. The structure of the use-case narrative ensures that every use-case slice will present the tester
 with one or more candidate test scenarios. The art of creating effective test cases is to choose the right
 sub-set of the potential test scenarios to fulfill the test idea and clearly define done for the slice.

This is the lightest level of detail that provides an executable test case. once the scenario has been
chosen the test case is defined enough to support exploratory and investigative testing. This can be
very useful early in the project lifecycle when the insight provided by testing the system is invaluable
but the specification (and solution) may not be stable enough to support formal, scripted testing.

 variables Identified: A test case takes some inputs, manipulates system states, and produces some
 results. These variables appear as inputs, internal states and outputs in the requirements. At this level
 of detail the acceptable ranges for the key variables involved in the scenario are explicitly identified.

This level of detail is suitable for those test cases where soliciting the opinion of the tester is an essen-
tial part of the test, for example when undertaking usability testing. It can also be used when more
structure is needed for exploratory and investigative testing.

USE-CASE 2.0 The Definitive Guide Page 45
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

 variables Set: The test case can be further elaborated by explicitly providing specific values for all of
 the variables involved in the test case.

This level of detail is suitable for manual test cases as all the information needed by an intelligent tester
to repeatedly and consistently execute the test case is in place.

 Scripted / Automated: If a test case is to be used many times or to support many different tests then it
 is worth making the effort to fully script or automate it.

 At this level of detail the test case can be executed without any intervention or additional decision
 making.

The test cases are the most important work product associated with a use case; remember it is the test cases
that define what it means to complete the development of a use case, not the use-case narrative. In a way the
test cases are the best form of requirements you can have.

The test cases will be used through-out the life-time of the system – they are not just used during the imple-
mentation of the use cases but are also used as the basis for regression testing and other quality checks. The
good news is that the structure of the use cases and use-case narratives naturally leads to well-formed, robust,
and resilient test cases; ones that will last as long as the system continues to support the use cases.

The use-case narratives are collections of stories that the system must support, and for each story described
in the use-case narrative there will have to be at least one test case. You create the test cases at the same time
as the use-case narratives as part of preparing a use-case slice for development.

USE-CASE 2.0 The Definitive Guide Page 48
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case Model
A use-case model is a model of all of the useful ways to use a system, and the value that they will provide. The
purpose of a use-case model is to capture all of the useful ways to use a system in an accessible format that
captures a system’s requirements and can be used to drive its development and testing.

A use-case model:

• Allows teams to agree on the required functionality and characteristics of a system.
• Clearly establishes the boundary and scope of the system by providing a complete picture of its actors
 (being outside the system) and use cases (being inside the system).
• Enables agile requirements management.

A use-case model is primarily made up of a set of actors and use cases, and diagrams illustrating their relation-
ships. Use-case models can be captured in many different ways including as part of a Wiki, on a white board or
flip-chart, as a set of PowerPoint slides, in a MS Word document, or in a modeling tool.

The use-case model can be prepared at different levels of detail:

 value established: The first step towards a complete use-case model is to identify the most important
 actors and use cases – the primary ones. These are the ones that provide the value of the system.

This is the lightest level of detail. It is suitable for most projects, particularly those adding new func-
tionality to existing systems where there is little or no value in modeling all the things the system
already does.

 System Boundary established: The primary actors and use cases capture the essence of why the
 system is built. They show how the users will get value from the system. They may not provide enough
 value to set it up and keep it running. In these cases secondary actors and use cases are necessary to
 enable and support the effective operation of the system.

This level of detail is useful when modeling brand new systems or new generations of existing systems.
At this level of detail all of the systems actors and use cases are identified and modeled.

 Structured: The use-case model often contains redundant information, such as common sequences or
 patterns of interaction. Structuring the use-case model is the way to deal with these redundancies.

For large and complex systems, especially those that are used to provide similar functionality within
many different contexts, structuring the use-case model can aid understanding, eliminate waste and
help you find reusable elements.

As long as your use-case model clearly shows the value that the stakeholders will receive from your new or
updated system then it is doing its job. Care should be taken when adding detail to the model. only advance
to System boundary Established or Structured if these levels of detail are clearly going to add value and help
you deliver the new system more efficiently.

USE-CASE 2.0 The Definitive Guide Page 47
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case narrative
The purpose of a use-case narrative is to tell the story of how the system and its actors work together to
achieve a particular goal.

Use-case narratives:

• outline the stories used to explore the requirements and identify the use-case slices
• Describe a sequence of actions, including variants that a system and its actors can perform to achieve
 a goal.
• Are presented as a set of flows that describe how an actor uses a system to achieve a goal, and what
 the system does for the actor to help achieve that goal.
• Capture the requirements information needed to support the other development activities.

Use-case narratives can be captured in many different ways including as part of a Wiki, on index cards, as MS
Word documents, or inside one of the many commercially available work management, requirements man-
agement or modeling tools.

Use-case narratives can be developed at different levels of detail ranging from a simple outline, identifying
the basic flow and the most important variants, through to a comprehensive, highly detailed specification
that defines all the actions, inputs and outputs involved in performing the use case. Use-Case narratives can
be prepared at the following levels of detail:

 Briefly Described: The lightest level of detail that just captures the goal of the use case and which actor
 starts it.

This level of detail is suitable for those use cases you decide not to implement. More detail will be
needed if the use case is to be sliced up for implementation.

 Bulleted outline: The use case must be outlined in order to understand its size and complexity. This
 level of detail also enables effective scope management as the outline allows the different parts of the
 use case to be prioritized against one another and, if necessary, targeted onto different releases.

This is the lightest level of detail that enables the use case to be sliced up and development to prog-
ress. It is suitable for those teams that are in close collaboration with their users, and are able to fill in
any missing detail via conversations and the completion of the accompanying test cases.

 essential outline: Sometimes it is necessary to clarify the responsibilities of the system and its actors
 whilst undertaking the use case. A bulleted outline captures their responsibilities but does not clearly
 define which parts of the use case are undertaken by the system and which are undertaken by the
 actor(s).

At this level of detail the narrative becomes a description of the dialog between the system and its ac-
tors. It is particularly useful when establishing the architecture of a new system or trying to establish a
new user experience.

USE-CASE 2.0 The Definitive Guide Page 48
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

 Fully Described: Use-case narratives can be used to provide a highly detailed requirements specifica-
 tion by evolving them to their most comprehensive level of detail, fully described. The extra detail may
 be needed to cover for the absence of expertise within the team, a lack of access to the stakeholders
 or to effectively communicate complex requirements.

This level of detail is particularly useful for those use cases where a misunderstanding of the contents
could have severe safety, financial or legal consequences. It can also be useful when off-shoring or out-
sourcing software development.

The use-case narrative is a very flexible work product that can be expanded to capture the amount of detail
you need to be successful whatever your circumstances. If you are part of a small team working collabora-
tively with the customer on an exploratory project then bulleted outlines will provide a very lightweight way
of discovering the requirements. If you are working in a more rigid environment where there is little access to
the real experts then essential outlines or fully described narratives can be used to plug the gaps in the team’s
knowledge.

not every use-case narrative needs to be taken to the same level of detail – it is not uncommon for the most
important and risky use cases to be more detailed than the others. The same goes for the sections of the use-
case narrative – the most important, complex or risky parts of a use case are often described in more detail
than the others.

USE-CASE 2.0 The Definitive Guide Page 49
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Use-Case realization
The purpose of a use-case realization is to show how the system’s elements, such as components, programs,
stored procedures, configuration files and data-base tables, collaborate together to perform a use case.
Use-case realizations:

• Identify the system elements involved in the use cases.
• Capture the responsibilities of the system elements when performing the use case.
• Describe how the system elements interact to perform the use case.
• Translate the business language used in the use-case narratives into the developer language used to
 describe the system’s implementation.

Use-case realizations are incredibly useful and can be used to drive the creation and validation of many of the
different views teams use to design and build their systems. For example user interface designers use use-case
realizations (in the form of storyboards) to explore the impact of the use cases on the user interface. Architects
use use-case realizations to analyze the architecturally significant use cases and assess whether or not the
architecture is fit for purpose. Use-case realizations can be presented in many different formats – the format
of the realization is completely dependent on the team’s development practices. Common ways of expressing
use-case realizations include simple tables, story-boards, sequence diagrams, collaboration diagrams, and
data-flow diagrams. The important thing is that the team creates a realization to identify which system ele-
ments are involved in the implementation of the use case and how they will change.

Create a use-case realization for each use case to identify the system elements involved in performing it and,
most importantly, assess how much they will have to be changed. You can think of the use-case realizations
as providing the ‘how’ to complement the use-case narratives ‘what’.

Use-case realizations can be presented at the following levels of detail:

 Implementation elements Identified: The lightest level of detail that just captures the elements of the
 system, both new and existing, that will participate in the use case.

 This level of detail is suitable for small teams, working in close collaboration and developing simple
 systems with a known architecture. You may need to add more detail if your system is complex, or your
 team is large or distributed.

 Responsibilities Allocated: To allow the team to be able to update the affected system elements in par
 allel, or in support of multiple slices, the developers need to understand the responsibilities of the in
 dividual elements. The responsibilities provide a high-level definition of what each element needs to
 do, store and track.

USE-CASE 2.0 The Definitive Guide Page 50
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

This level of detail is suitable for situations where each use-case slice touches on multiple system ele-
ments, or where the slices will be developed by multiple developers working in parallel. It should also
be used when the architecture of the system is immature and the overall responsibilities of the system
elements have yet to be understood.

 Interaction Defined: To provide a complete, unambiguous definition of the changes required to each
 system element involved in the use case, the use-case realization must include details of all the inter
 faces and interactions involved in performing the use case.

This level of detail is particularly useful for those use cases where the system design is complex or
challenging. It can also be useful when the system elements are to be developed by developers with
little or no knowledge of the design of the system, no access to experienced designers, and no remit
to re-factor or alter the design. It is also useful when dealing with inexperienced developers who are
still learning their trade.

The use-case realization is a very flexible work product, teams can expand their realization to add more detail
as and when they need it. If a small team is doing all their analysis and design collaboratively then simple,
lightweight use-case realizations will be sufficient. If a large team, that is unable to have lots of collaborative
sessions, is developing a complex system then more detailed realizations will aid communication, and make
sure that all the developers have all the information they need to successfully deliver their system elements
and implement their use-case slices.

USE-CASE 2.0 The Definitive Guide Page 51
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Glossary of Terms
Actor: An actor defines a role that a user can play when interacting with the system. A user can either be an in-
dividual or another system. Actors have a name and a brief description, and they are associated to the use cases
with which they interact.
Alternative Flow: Description of variant or optional behaviour as part of a use-case narrative. Alternative flows
are defined relative to the use case’s basic flow.
Application: Computer software designed to help the actors in performing specific tasks.
Aspect-Oriented Programming: A programming technique that which aims to increase modularity by allow-
ing the separation of cross-cutting concerns (see http://en.wikipedia.org/wiki/Aspect-oriented_programming).
Basic Flow: The description of the normal, expected path through the use case. This is the path taken by most of
the users most of the time; it is the most important part of the use-case narrative.
Customer: The stakeholder who is paying for the development of the system or who is expected to purchase
the system once it is complete.
Flow: A description of some full or partial path through a use-case narrative. There is always at least a basic flow,
and there may be alternative flows.
Requirements: What the software system must do to satisfy the stakeholders.
Separation of Concerns: The process of splitting up a system to minimize the overlap in functionality (see
http://en.wikipedia.org/wiki/Separation_of_concerns).
Software System: A system made up of software, hardware, and digital information, and that provides its pri-
mary value by the execution of the software.
A software system can be part of a larger software, hardware, business or social solution.
Stakeholder: A person, group or organization who affects or is affected by the software system.
Story: A way of using a system that is of value to a user or other stakeholder. In Use-Case 2.0 a story is described
by part of the use-case narrative, one or more flows and special requirements, and one or more test cases.
System: A group of things or parts working together or connected in some way to form a whole. Typically used
to refer to the subject of the use-case model: the product to be built.
System Element: Member of a set of elements that constitutes a system (ISo/IEC 15288:2008)
Test Case: A test case defines a set of test inputs and expected results for the purpose of evaluating whether or
not a system works correctly.Use case: A use case is all the ways of using a system to achieve a particular goal for
a particular user.
Use-Case 2.0: A scalable, agile practice that uses use-cases to capture a set of requirements and drive the incre-
mental development of a system to fulfill them.
Use-Case Diagram: A diagram showing a number of actors and use cases, and their relationships.
Use-Case Model: A model of all of the useful ways to use a system, and the value that it will provide. A use-case
model is primarily made up of a set of actors and a set of use cases, and diagrams illustrating their relationships.
Use-Case Narrative: A description of a use case that tells the story of how the system and its actors work to-
gether to achieve a particular goal. It includes a sequence of actions (including variants) that a system and its
actors can perform to achieve a goal.
Use-Case Slice: A use-case slice is one or more stories selected from a use case to form a work item that is of clear
value to the customer.
User: A stakeholder who interacts with the system to achieve its goals.

USE-CASE 2.0 The Definitive Guide Page 52
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

Acknowledgements
General
Use-Case 2.0 is based on industry-accepted best practices, used and proven for decades. We would like to
thank the tens of thousands of people who use use cases everyday on their projects and in particular those
who share their experiences in-side and out-side their own organizations. Without all of their hard work and
enthusiasm we wouldn’t have the motivation or knowledge to attempt this evolution of the technique. We
hope you find this short e-book useful, and continue to inspect and adapt the way that you apply use cases.

People
We would also like to thank everyone who has directly contributed to the creation of this e-book including,
in no particular order, Paul MacMahon, richard Schaff , Eric lopes Cardozo, Svante lidman, Craig lucia, Tony
ludwig, ron Garton, burkhard Perkens-Golomb, Arran hartgroves, James Gamble, brian hooper, Stefan by-
lund, and Pan-Wei ng.

USE-CASE 2.0 The Definitive Guide Page 53
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

bibliography
object oriented Software engineering: A Use Case Driven Approach
Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar overgaard
The original book that introduced use cases to the world.

· Publisher: Addison-Wesley Professional; revised edition (July 10, 1992)
· ISbn-10: 0201544350
· ISbn-13: 978-0201544350

The object Advantage: Business Process Reengineering With object Technology
Ivar Jacobson, Maria ericsson, Agneta Jacobson
The definitive guide to using use cases for business process reengineering.

· Publisher: Addison-Wesley Professional (September 30, 1994)
· ISbn-10: 0201422891
· ISbn-13: 978-0201422894

Software Reuse: Architecture, Process and organization for Business Success
Ivar Jacobson, Martin Griss, Patrik Jonsson
A comprehensive guide to software reuse, including in-depth guidance on using use cases for the develop-
ment of product lines and systems-of-interconnected systems.

· Publisher: Addison-Wesley Professional (June 1, 1997)
· language: English
· ISbn-10: 0201924765
· ISbn-13: 978-0201924763

Use-Case Modeling
Kurt Bittner and Ian Spence
The definitive guide to creating use-case models and writing good use cases.

· Publisher: Addison-Wesley Professional; 1 edition (August 30, 2002)
· ISbn-10: 0201709139
· ISbn-13: 978-0201709131

Aspect-oriented Software Development with Use Cases
Ivar Jacobson and Pan-Wei Ng
The book that introduced the world to use-case slices in their previous guise as use-case modules.

· Publisher: Addison-Wesley Professional; 1 edition (January 9, 2005)
· ISbn-10: 0321268881
· ISbn-13: 978-0321268884

USE-CASE 2.0 The Definitive Guide Page 53
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

About the Authors

Ivar Jacobson
Dr. Ivar Jacobson is a father of components and component architecture, use cases, aspect-oriented software
development, modern business engineering, the Unified Modeling language and the rational Unified Pro-
cess. his latest contribution to the software industry is a formal practice concept that promotes practices as
the ‘first-class citizens’ of software development and views process simply as a composition of practices. he
is the principal author of six influential and best-selling books. he is a keynote speaker at many large confer-
ences around the world and has trained several process improvement consultants.

Ian Spence
Ian is Chief Technology officer at Ivar Jacobson International where he specializes in the agile application of
the Unified Process. he is a certified rUP practitioner, ScrumMaster and an experience coach having worked
with 100s of projects to introduce iterative and agile techniques. he has over 20 years experience in the soft-
ware industry, covering the complete development lifecycle, including requirements capture, architecture,
analysis, design, implementation and project management. his specialty subjects are iterative project man-
agement, agile team working and requirements management with use cases. In his role as CTo, Ian contrib-
utes to the technical direction of Ivar Jacobson International and works with the company’s Technology office
to define the next generation of smart, active, software development practices. he is the project lead and
process architect for the development of the Essential Unified Process and the practices it contains. When
he is not working on researching, capturing and defining practices he spends his time assisting companies
in the creation and execution of change programs to improve their software development capability. he is
co-author of the Addison Wesley books “Use Case Modeling” and “Managing Iterative Software Development
Projects”.

Kurt Bittner
Kurt is Chief Technology officer of Ivar Jacobson International, Americas. he has worked in the software in-
dustry for more than 25 years in a variety of roles including developer, team leader, architect, project manager
and business leader. he has led agile projects, run a large division of a software development company, sur-
vived and thrived in several start-ups, run an acquisition, and worked with clients in a variety of industries in-
cluding aerospace, finance, energy and electronics. he was a key contributor to the early development of the
rational Unified Process as well as, more recently, IbM’s Jazz project. his experience includes significant work
in banking and finance, relational database system design and architecting, and consulting and mentoring a
wide variety of clients on software development improvement strategies and approaches. he is the co-author
of “Use Case Modeling”, “Managing Iterative Software Development Projects” and “The Economics of Iterative
Software Development”.

USE-CASE 2.0 The Definitive Guide Page 55
© 2005-2011 IvAr JACobSon InTErnATIonAl SA. All rIGhTS rESErvED.

About Ivar Jacobson International
IIJI is a global services company specializing in improving the per-
formance of software development teams by removing barriers to
the adoption of new practices. Through the provision of high cali-
bre people, innovative practices, and proven solutions, we ensure
that our customers achieve strong business/IT alignment, high per-
forming teams, and projects that deliver.

www.ivarjacobson.com

Sweden
+46 8 515 10 174
info-se@ivarjacobson.com

The Netherlands
+31(0) 20 654 1878
info-nl@ivarjacobson.com

UK
+44 (0)20 7025 8070
info-uk@ivarjacobson.com

Asia
+8610 82486030
info-asia@ivarjacobson.com

Americas
1 703 338 5421
info-usa@ivarjacobson.com

	Bookmark 32
	About this Guide
	How to read this Guide
	What is Use-Case 2.0?
	First Principles

	Principle 1: Keep it simple by telling stories
	Principle 2: Understand the big picture
	Principle 3: Focus on value
	Principle 4: Build the system in slices
	Principle 5: Deliver the system in increments
	Principle 6: Adapt to meet the team’s needs
	Use-Case 2.0 Content

	Things to Work With
	Work Products
	Things to do
	Using Use-Case 2.0

	Use-Case 2.0: Applicable for all types of system
	Use-Case 2.0: Handling all types of requirement
	Use-Case 2.0: Applicable for all development approaches
	Use-Case 2.0: Scaling to meet your needs – scaling in,
				 scaling out and scaling up
	Conclusion
	Appendix 1: Work Products

	Supporting Information
	Test Case
	Use-Case Model
	Use-Case Narrative
	Use-Case Realization
	Glossary of Terms
	Acknowledgements

	General
	People
	Bibliography
	About the Authors

