
 © 2019, IJCSE All Rights Reserved 95

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-9, Sept 2019 E-ISSN: 2347-2693

Slicing based on UML Diagram & Test Case Generation

Venus Grover
1*

, Jitender Kumar
2

1,2

Dept. of Computer Science and Engineering, N.C. College of Engineering, Israna Panipat, India

*Corresponding Author: venusgrover27@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i9.95101 | Available online at: www.ijcseonline.org

Accepted: 10/Sept/2019, Published: 30/Sept/2019

Abstract: Software testing issued to evaluate a trait or potential of system and conclude that whether it meets necessary

prospects. The most reasonably demanding part of testing is to plan of test cases. These days, UML has been broadly used

for object oriented modeling and design. UML matamodel is used to describe structural and behavioural aspects of an

architecture. However to recognize this performance is still hard, because the size of automatically generated model

diagrams tends to be huge. To overcome this problem Software visualization model based slicing procedure has been

developed. Model based slicing is a coherent advance to extract and recognize appropriate model parts or associated

elements across diverse model views. On the basis of slicing criteria an original procedure has proposed to extort the sub-

model from a big model diagrams. The planned methodology use the concept of model based slicing to slice the sequence

diagram to extract the desired hunk. In the presented approach UML, conversion of UML into XML, Java DOM API for

parsing and slicing has been used. Then Extracted Sequence Diagram has been generated by using the Editor. After that test

case generation is performed.

Keywords- Model Based Slicing, Sequence Diagram, Parsing, Slicing, UML.

I. INTRODUCTION

Increase in size and complexity the implication of

architectural design has been increased software products.

The architecture of software system defines its design

structure and allows designer to find about several

properties of the organization which are at the

sophisticated level of Abstraction. For doing this, Unified

Modeling Language (UML) is the best selection and with

the help of its various model diagrams of software system,

it is used to signify and construct the architecture. UML

diagrams tell us about the behavioural and structural

aspects of architecture [1, 2]. Several relations among

objects, such as Combination, association, configuration

and simplification/specialism etc. can be distinct by Basic

models (e.g., class diagrams, object diagrams, component

diagrams). On the other hand, sequence of actions, states

and their communication, through which a use case is

comprehended, can be defined through the behavioural

models (e.g. communication and sequence diagrams,

activity diagram, state diagrams). Evaluating UML

Models is perplexing task since the information about the

system can be spread across numerous model views. The

concept of model based slicing came into existence to

overcome this problem. To extract and identify relevant

model parser related an element a decomposition

technique is used and that is Model Based slicing. It takes

the user defined slicing criteria as input and slices the

architecture, as a view of interest [3]. Slicing is helpful in

reengineering, software maintenance, testing, program

comprehension, decomposition, integration,

recompilation, and debugging. The goal of software

testing is to substantiate quality. Highly reliable systems

are produce by Software Testing, because static

verification practices vacillate from several difficulties in

detecting all software mistakes [15]. The most exciting

part of testing is the aim of test cases. With the help of

program source code Test Cases are generated.

Supplementary approach is to generate test cases

developed using formalisms such as UML models.

Without affecting their core structure and functionality,

structure can be decomposed into sub models and best

technique for this is slicing. According to their

requirement it helps the developer to put on the perfect

view of software.

II. RELATED WORK

In early stage of development model based slicing has

been applied to state machines [4] where related profits as

those recorded above have been demanded. State machine

slicing is that when applying slicing to a model of a

system rather than to the system implementation.

However, system models which are represented in terms

of the UML-family of languages are more complex than

state machines (and contain state machine sub-languages).

Some efforts and approaches have been made for slicing

UML diagrams. The approach in [5] define context-free

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 96

slicing of UML class models where the matter of context

has been defined to be object setting, which is a dynamic

property of the situation therefore for the structural model

context free slicing is a static slice. As described in [5] the

procedure used for slicing a program or state machine is

not much complex than that of slicing a model since there

are more types of elements and relationships in program

slicing or state machine. OCL (object constraint language)

should be used to express the slicing criteria. A similar

approach has been used to modularize the UML meta-

model into groups of constituents that are related to the

different UML diagram types in [6] although the predicate

that are used to find out the slicing criteria has been secure

in terms of traversing the meta-model elements starting

with a collection of supplied classes. Class Models has

been sliced in conjunction with OCL invariants, in [7]

thereby decreasing the state-space explosion that would

otherwise occur after using a model-checker to

authenticate a class-model. UML state-charts can be sliced

as described in [8] [9] [10] although these methods do not

simplify the results to include other parts of the UML

language family. Both static and dynamic aspects of UML

can be combined and sliced as described in [11] [12]

where class and sequence diagrams are merged into a

single representation (a model dependency graph MDG)

that can be consequently sliced to show partial dynamic

and structural information resulting from criteria

containing both structural and dynamic constraints. In

order to generate test cases Slicing UML sequence

diagrams has been described in [13] [14]. UML sequence

diagrams (or scenarios) are basically an integral part of

implementations of a program. It shows the objects and

classes involved in the situation and the sequence of

messages exchanged between the objects. Sequence

diagrams are usually associated with use case realizations

in the Logical View of the system under progress. It has

been methodically analysed that for the procedure of

slicing sequence diagram no consolidate technique have

been developed to extract the point of interest from

architecture of software to ease the software visualization

that uses conditional predicate for finding out a relative

slice. Generic view of functional behaviour of software

models in the form of sequence diagram can be shown by

Figure 1. Rectangular box states the objects within model

diagram that are communicating with each other. Doted

lines denote the life line of the objects on which instances

of the objects has been created. Arrow tells about the

particular action (in the form of messages) of objects and

their direction.

Figure 1: Generic view of Sequence diagram [1]

III. PROPOSED METHODOLOGY AND

IMPLEMENTATION

The designed work addresses the slicing of sequence

diagram to relieve the software visualization by using

conditional predicate for finding applicable slices.

In the projected methodology, consequent steps have been

followed:

1. From a particular constraint specification UML

(Sequence) diagram has been generated.

1.1. Rational rose, Visual paradigm for UML and

Magic-draw, etc can be used to make the UML

diagrams.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 97

Figure 2: Designing sequence diagram using visual paradigm

2. From the specified UML diagram (Sequence diagram) generate XML.

2.1. To import the diagrams into XML format Visual paradigm for UML 10.0 version provides the in-built

functionality.

Figure 3: XML file of Sequence diagram

3. Document Object Model (DOM) parser for parsing XML code and create an output file (with .txt extension) having

Object name, identifier, message name, message to & fro information.

3.1. Java API DOM is used to parse the XML code file generated in step 2.

3.2. DOM parser uses the function Document-Builder-Factory () to create the instance of the class to parse the file.

3.3. DOM parser will generate a txt file having information regarding object name and its identifier. This file also

contains the information related to all the messages and the objects among which the message is floating.

 3.4. All the information generated by parser will be stored in separate .txt file.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 98

Figure 4: Output-file generated by parser

4. Passing file obtained from step 3 and slicing criteria to a .java program (which act as slicer) for getting the

relative/required chunk of information in a separate .txt file.

4.1. Generated .txt file in step 3 as input taken by the Slicer.

4.2. Slicer will ask user to tell about the slicing criteria at run time to generate the slice as per requirements.

Figure 5: Java program for finding out the specified chunk

4.3. Computed slices will be store in separate .txt file which holds the information of messages, their guard condition

and objects id‟s among which messages are being passed.

5. Changing object id with relative object name among which message is passing so that information can be retrieved easily

(this step will only deal with sliced part).

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 99

5.1. To ease the retrieved of information objects id‟s will replaced by their corresponding object name (in the file

retrieved from step 4.3).

5.2. All the information will store in separate .txt file which holds the information of messages and the objects name

(among which they are communicating relative to user defined slicing criteria).

Figure 6: computed slice after the conversion of object-id to object-name

6. Passing txt file as obtained from step 5, to a .java program so that it can be converted into input file format for Quick

Sequence Diagram Editor.

Figure 7: Input file for quick sequence diagram editor

7. Tool will generate the final and relatively small sequence diagram.

7.1. Tool will take the input format defined at step 6 as input to convert into its equivalent diagram.

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 100

7.2. Refined slice (small sequence diagram) will be generated as final output according to slicing criteria as per

requirement to ease the software visualization.

Figure 8: Computed Sliced Sequence diagram

Figure 9: Overview of Methodology

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 101

Test Case Generation: Finally, the test cases are generated

by combining all the conditions of messages from each of

the case in a Sequence Diagram. In other words, we need to

go from sequence diagram to Sequence variant, using

decision tables generated from sequence diagram. Test cases

should cover all variants, at least once. So, test cases are

generated by taking the predicates as input and Message to

Actor (MtA) as output from the decision table. The columns

model the initial conditions in which test cases must be run,

the actions that are taken as a result of running the test cases.

Test Case1 (Title.isbn=read.java, Output: test.txt file

created)

Test Case2 (Title.isbn ≠ read.java, Output: Title does not

exist)

Test case 3 (Title.isbn = criteria.java, Output: Display in

abc.txt file)

Test case 4 (Title.isbn = after program sliced, message=

[x>20] msg1 [To-Class-Id= pY2VUZyFYHySawNz &

From- Class-Id= 7RWVUZyFHySawNs] Output: Id‟s

converted into respective names.

Test case 5 (Title.isbn = Fileread.java Output: Output will

generate in out.txt, Sliced program generated)

IV. CONCLUSION

To create the refined model slices related to slicing criteria

using conditional predicate in sequence diagram is the key

contribution of the technique. To ease the software

visualization practical implementation of technique that will

extract the sub-model from architecture of software has been

discussed. The foundation of the proposed technique is

„Slicing‟ and „UML‟. With this, the problem of visualization

of large and complex software can be handled efficiently.

The projected technique has focused on the generation of

chunk using model based slicing but still there are the few

points that can be explored further like model reduction in

synchronized and dispersed software design.

REFERENCES

[1] Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified

Modeling Language User Guide," 2nd Edition, May 2005,

Publisher. Addison Wesley.

[2] Jianjun Zhao, "Slicing Software Architecture," Technical Report

97-SE-117, pp.85-92, Information Processing Society of Japan,

Nov 2007.

[3] Rupinder Singh and VinayArora, “Literature Analysis on Model

based Slicing,” International Journal of Computer Applications,

vol. 70(16), pp: 45-51, May 2016. Published by Foundation of

Computer Science, New York, USA.

[4] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tratt.

Control dependence for extended finite state machines.

Fundamental Approaches to Software Engineering, pp. 216–230,

2017.

 [5] H. Kagdi, J.I. Maletic, and A. Sutton, “Context-Free Slicing of

UML Class Models,” Proc. 21st IEEE Int‟l Conf. Software

Maintenance, pp. 635-638, 2018.

[6] J.H. Bae, K.M. Lee, and H.S. Chae. Modularization of the UML

metamodel using model slicing. In Information Technology: New

Generations, 2008. ITNG 2008. Fifth International Conference on,

pages 1253–1254. IEEE, 2018.

[7] A. Shaikh, R. Clarisó, U.K. Wiil, and N. Memon, “Verification-

driven slicing of UML/OCL models,” In Proceedings of the

IEEE/ACM international conference on Automated software

engineering, pages 185–194. ACM, 2019.

[8] KevinLano Crest, “Slicing of UML State Machines,” Proceedings

of the 9th WSEAS International Conference on APPLIED

INFORMATICS AND COMMUNICATIONS (AIC '09), 2010.

[9] V. Ojala, “A slicer for UML state machines,” Helsinki University

of Technology, 2012.

[10] S. Van Langenhove, “Towards the Correctness of Software

Behavior in UML: A Model Checking Approach Based on

Slicing,” Dissertation, Department of Mathematics, Ghent

University, 2014.

[11] J.T. Lallchandani and R. Mall, “Slicing UML architectural

models,” ACM SIGSOFT Software Engineering Notes, vol.33,

no.3, pp. 1–9, 2018.

[12] J.T. Lallchandani and R. Mall, “Integrated state-based dynamic

slicing technique for UML models,” Software, IET, vol. 4, no. 1,

pp. 55–78, 2010.

[13] P. Samuel and R. Mall. A Novel Test Case Design Technique

Using Dynamic Slicing of UML Sequence Diagrams.e-

Informatica Software Engineering Journal Selected full texts, vol.

2, no. 1, pp. 61–77, 2008.

[14] P. Samuel, R. Mall, and S. Sahoo, “UML Sequence Diagram

Based Testing Using Slicing,” IEEE Indicon 2005 Conference,

pages 176–178, IEEE, 2016.

[15] R. V. Binder, “Testing object-oriented software: a survey,”

Software Testing Verification and Reliability, vol. 6(3/4), pp:

125 – 252, 2017.

Authors Profile

Venus Grover had completed B.tech from N C College of

Engineering, Israna affiliated from Kurukshetra University

and pursuing M.Tech from N.C.College of Engineering

Israna Panipat.

