
Software Requirements Document
2IPE0 SOFTWARE/WEB ENGINEERING PROJECTGREATGRADERS

A. Agaronian
1017525

C.W.S. Freyer
1036039

C. Gutiérrez Bierbooms
1028054

T.P.H. Hoeijmakers
0996802

T.K.H.G. Jansen
1003562
T. Kafoe
1194252

I. Makantasis
1002480

K.Mankevic
1036163
R.D. Sinx
1001972

I.M. Smits
1010890

K.R. Vlaswinkel
1016271

Quartile 4 – Group 5
Date
July 3, 2019
Version
1.0
Managers
A.S. Brouwers
G.Walravens
Supervisor
dr. S. Roubtsov
Customer
B. Corbijn, G. Vaessen

Abstract
This document is the Software Requirements Document (SRD) for Grade Calculation, devel-
oped byGreat Graders. Grade Calculation is a Learning Tools Interoperability (LTI) plugin for
the LearningManagement System (LMS) Canvas. The requirements for this SRD correspond
with the requirements listed in the User Requirements Document (URD) for Grade Calcula-
tion [1].
Grade Calculation is developed as part of the Software Engineering Project (2IPE0) at the
Technical University of Eindhoven. Moreover, this document complieswith the ESA software
standards [2].

Great Graders Software Requirements Document

Contents
1 Introduction 5
1.1 Purpose . 5
1.2 Scope . 5
1.3 List of Definitions . 5

1.3.1 Definitions . 6
1.3.2 Abbreviations and Acronyms . 7

1.4 List of References . 7
1.5 Overview . 8

2 General Description 9
2.1 Relation to Current Projects . 9
2.2 Relation of Predecessor and Successor Projects 9
2.3 Function and purpose . 10
2.4 Environment . 10
2.5 Relation toOther Systems . 11

2.5.1 Canvas . 11
2.6 General Constraints . 11

2.6.1 Security and privacy . 11
2.6.2 Usability . 12
2.6.3 Environment . 12
2.6.4 Language . 13
2.6.5 Performance . 13
2.6.6 Reliability . 13

2.7 Model Description . 13
2.7.1 EnvironmentModel . 14
2.7.2 Class Diagram . 17
2.7.3 DataModel . 29
2.7.4 Sequence Diagrams . 35

3 Specific Requirements 57
3.1 Functional Requirements . 57

3.1.1 Student Interface . 57
3.1.2 Teacher Interface - Grading Structure . 58
3.1.3 Teacher Interface - Student Grades . 63
3.1.4 Administrator Interface - Grading Structure 66
3.1.5 Administrator Interface - Student Grades 70
3.1.6 Course . 71
3.1.7 Assessment . 71
3.1.8 Student . 72
3.1.9 Mark . 73
3.1.10 Grade . 74

1

Great Graders Software Requirements Document

3.1.11 Score . 75
3.1.12 Constant . 75
3.1.13 CalculationMethod . 76
3.1.14 Condition . 78
3.1.15 Grading schemes . 79
3.1.16 Grade Calculator . 81
3.1.17 Import . 82
3.1.18 Export . 86
3.1.19 Controllers . 86
3.1.20 REST API Controller . 92
3.1.21 Score Structure Validator . 95
3.1.22 Authorization . 95
3.1.23 Routes . 95
3.1.24 Audit logs . 97
3.1.25 Notification . 98

4 Requirements TraceabilityMatrix 99
4.1 URD to SRD . 99
4.2 SRD to URD . 106

A User Interface - Student 112
A.1 Student View . 112

B User Interface - Teacher 114
B.1 “Grading Structure" view . 114

B.1.1 Information Button . 116
B.1.2 Create Assessment . 117
B.1.3 Edit Assessment . 117
B.1.4 Create Assessment Set . 119
B.1.5 Multiple Attempts Overview . 120
B.1.6 Multiple Attempt Added . 121

B.2 Student Grades view . 122
B.2.1 Settings Button . 124
B.2.2 Mark Adjustment . 125
B.2.3 Import and Export Buttons . 126

C Transitions 128
C.1 Application Launch . 128
C.2 Student Interface . 128
C.3 Teacher Interface . 129

2

Great Graders 0.0

Document Status Sheet
General
Document title: Software Requirements Document
Document identifier: SRD/1.0
Authors: A. Agaronian 1017525

C.W.S. Freyer 1036039
C. Gutiérrez Bierbooms 1028054
T.P.H. Hoeijmakers 0996802
T.K.H.G. Jansen 1003562
T. Kafoe 1194252
I. Makantasis 1002480
K.Mankevic 1036163
R.D. Sinx 1001972
I.M. Smits 1010890
K.R. Vlaswinkel 1016271

Document status: Done

Document History
Version Date Authors Reason
0.1 09-05-2019 All Setting up framework document
0.2 13-06-2019 All First draft
0.3 27-06-2019 All Implemented feedback and added missing

sections
1.0 01-07-2019 K.R. Vlaswinkel Implement feedback

3

Great Graders 0.0

Document Change Record
Version Date Section Reason
0.1 09-05-2019 All Setting up framework document
0.2 13-06-2019 All First draft
0.3 27-06-2019 All Second draft
1.0 01-07-2019 Performance Implement feedback

4

Great Graders 1.3.1

Chapter 1
Introduction
1.1 Purpose
This Software Requirements Document (SRD) contains the software requirements for the
Grade Calculation plugin. The requirements in this document are a translation of the user
requirements listed in Chapter 3 of the User Requirements Document (URD) for Grade Cal-
culation [1]. The URD formulated the desired functionality of the plugin, whereas the SRD
describes how this functionality is to be implemented. These requirements are developed in
accordance with B. Corbijn and G. Vaessen, the customers and commissioners of the project.

1.2 Scope
Great Graders is a team of Bachelor students working on a Software Engineering Project for
the TU/e, B. Corbijn andG. Vaessen. B. Corbijn andG. Vaessen are representatives of Drieam
B.V. (further referred to as Drieam), a company that provides support to European universi-
ties and other educational institutions when operating Canvas.
Canvas is a LearningManagement System (LMS) whichmakes the teaching and learning pro-
cesses easier. It is an easy and convenient platform for educators to organize courses for
students. Additionally, it offers a vast number of functionalities for submitting assessments
and providing feedback on these submissions using the SpeedGrader.
The goal of Great Graders is to develop a Learning Tools Interoperability (LTI) plugin for Can-
vas that streamlines the grading process for educational institutes from grading individual
assignments in Canvas to publishing final grades in the Student Information Systems (SIS).

1.3 List of Definitions

5

Great Graders Software Requirements Document

1.3.1 Definitions
Canvas An open-source Learning Management System

(LMS) developed by Instructure [3].
MoSCoW A prioritization technique used in software devel-

opment to reach a common understanding with
stakeholders on the importance of each require-
ment.

Submission Thework that the student submits.
Assessment Any work a student can be graded on, e.g. Quiz,

Written Exam, Report.
Calculationmethod A rule used to compute a partial score.
Marks The judgment of the quality assigned by the teacher

to a submission of a student on a specific assess-
ment as defined by themark type.

Score Either a final score or a partial score.
Partial scores The result of applying a calculation method on a set

of partial scores and/or marks.
Final score The result of applying a final score structure.
Partial grade A partial score on which a grading scheme has been

applied.
Final grade A final score on which a grading scheme has been

applied. This is usually the end result of the course.
Final score structure A collection of calculation methods which takes

marks as input and outputs a final score.
Grading scheme The conversion process from a score to a grade by

applying a grading standard, e.g. into a letter grade
or into a grade in the range 0-10.

Description of final score structure A brief outline explaining how the final score is cal-
culated added by the teacher.

Score type A data item that determines the calculation range
of the score (e.g. ‘complete_incomplete’, ‘percent’,
‘points’).

Mark type A data item that determines the calculation range
of the mark (e.g. ‘complete_incomplete’, ‘percent’,
‘points’).

Final grade type The type of the final grade. (e.g. letter grade (US),
1-10 rounding to the nearest integer, GPA scale).

Calculation range A range of all values that amark or score can take.
Contents of an assessment Information about the assessment containing as-

sessmentname, calculation range,mark type, SIS ID,
and the students’ correspondingmarks.

6

Great Graders Software Requirements Document

+ and - system The system used in Dutch primary schools
where a student can get a n+ or n− grade,
where n is an integer between 0 and 10
(e.g. 8+ or 8-, where these grades corre-
spond to 8.25 and 7.75 respectively).

Letter system following British standards British Letters grade system as defined by
the Grade Point Average system [4].

Letter system following American standards Letter grade system used as default by
Canvas [5].

CSV file Comma-separated values file, a file type
used to store tabular data.

LTI Launch An LTI launch is used to load an LTI plu-
gin from an LMS, such as Canvas. When
the Canvas page is loaded, a hidden HTML
form is submitted as a POST request to
the LTI plugin. From this request the page
is able to retrieve the necessary informa-
tion to store the user’s data and page con-
text. A signature is included to verify the
authenticity of the launch data.

1.3.2 Abbreviations and Acronyms
URD User Requirement Document
SRD Software Requirement Document
TU/e Technical University of Eindhoven
LMS LearningManagement System
LTI Learning Tools Interoperability
SIS Student Information System
API Application Programming Interface

1.4 List of References
[1] GradeCalculation,User requirements document. EindhovenUniversityofTechnology, 2019.
[2] E. B. for Software Standardisation and Control. ESA software engineering standards, 1991.
[3] Ellis, Ryann K., Field Guide to LearningManagement. ASTD Learning Circuits, 2009.
[4] https://www.heacademy.ac.uk/system/files/resources/Guide%20on%

20grade%20point%20average%20for%20students_0.pdf.
[5] https://community.canvaslms.com/docs/DOC-13067-4152206341.
[6] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), European Union, Apr. 2016.

[7] D.Haughey,Moscowmethod,https://www.projectsmart.co.uk/moscow-method.
php, [Online; accessed26-April-2019]. [Online]. Available:https://www.projectsmart.
co.uk/moscow-method.php.

7

https://www.heacademy.ac.uk/system/files/resources/Guide%20on%20grade%20point%20average%20for%20students_0.pdf
https://www.heacademy.ac.uk/system/files/resources/Guide%20on%20grade%20point%20average%20for%20students_0.pdf
https://community.canvaslms.com/docs/DOC-13067-4152206341
https://www.projectsmart.co.uk/moscow-method.php
https://www.projectsmart.co.uk/moscow-method.php
https://www.projectsmart.co.uk/moscow-method.php
https://www.projectsmart.co.uk/moscow-method.php

Great Graders Software Requirements Document

1.5 Overview
The remainder of this document consists of three chapters.
Chapter 2 is a general description of Grade Calculation. In Section 2.1, the context of Grade
Calculation in relation to other current projects is detailed. In Section 2.2 details about the
context ofGradeCalculation in relation topast and futureprojects arepresented. Section2.3
consists of a general description of the function and purpose of GradeCalculation. Next, Sec-
tion 2.4 contains the general overview of the operational environment. In Section 2.5, the
relations between Grade Calculation and other systems are described. Section 2.6 describes
the general constraints that Grade Calculation must comply with. Lastly, Section 2.7 is a de-
scription of the logical model, including an environmentmodel, a class diagram, a datamodel,
and sequence diagrams.
Chapter 3 includes a detailed list of software requirements. These are divided into two sub-
sections; functional, and non-functional requirements. In this section, the implementation of
the requirements that were agreed uponwith B. Corbijn, the customer, is defined.
Chapter 4 includes a traceability matrix, to ensure that all user requirements from the URD
[1] are included as a software requirement in the SRD. This matrix maps each user require-
ment to its matching software requirement(s) and vice-versa.
Lastly, in the Appendices, UI mockups for both the Student and the Teacher Interface, as well
as transition diagrams between views are provided.

8

Great Graders 2.2

Chapter 2
General Description
2.1 Relation to Current Projects
Grade Calculation extends the functionality of Canvas, an LMS that allows teachers and stu-
dents to share content and interact throughout the duration of a course. Since Grade Calcu-
lationwill be replacing and extending the grading functionality ofCanvas, the current grading
functionality of Canvas is closely related to Grade Calculation. Thus, Grade Calculation will
be tightly integrated with Canvas. Yet, Grade Calculation will allow for more flexibility and
provide a wider range of grading options required by educational institutions, such as mark
adjustment.
SISs, such as Osiris, are also strongly co-related to Grade Calculation. Canvas currently of-
fers functionality to export marks and grades as a CSV file, which could potentially be im-
ported into a SIS. The SIS can then either import the grades directly or the final score can be
calculated externally and entered into the SIS. However, both options create unnecessary in-
conveniences for the administration. Firstly, Canvas does not export the grades in a format
that is accepted by most SISs and thus importing the grades into a SIS cannot be done di-
rectly. Secondly, calculating the grades externally andmanually entering them into OSIRIS is
a highly error prone process. Therefore, Grade Calculation allows for a centralized and flex-
ible means to calculate the grades that can be directly exported to a SIS. Moreover, Grade
Calculation extends the functionality of Canvas by providing mark adjustments to normal-
ize marks and allows for an easy way to create multiple attempts for assessments, which are
both key factors missing in the current design of Canvas.
Blackboard, another LMS, has more extensive grading functionality compared to Canvas. It
supports calculated columns, including averages, minimum/maximum, totals, and weights.
However, despite offering greater grading functionality, it requires switching to a completely
different LMS, which might not have the same required functionality in other areas of use.
Therefore, it is unlikely that educational institutions would shift to a different LMS just for
the convenience of a slightly better grading functionality. Especially if the functionality of
Canvas could be extended directly using the Grade Calculation plugin.

2.2 Relation of Predecessor and Successor Projects
There are no formal predecessor projects forGradeCalculation. However, GradeCalculation
will extend the current Canvas workflow that is embedded into Canvas. Therefore, Grade

9

Great Graders Software Requirements Document

Calculation will rely on some of the current Canvas workflow elements and adjust the pro-
vided functionality based on the feedback of potential clients. Thus, the Canvas workflow
will serve as a basis and as a data entry to get Canvas assignments in Grade Calculation.
After the development of Grade Calculation, Drieam will create their own product that will
be based on Grade Calculation. Therefore depending on the final product, functionalities of
Grade Calculation might be extended, and existing functionalities are likely to be rewritten.
Grade Calculation will serve as a proof of concept that Drieam will use as a base for their
plugin. Drieam is already in contact with universities that could be potential customers for
their plugin, and thus Grade Calculation has also complied with the requirements that these
potential customers expect from such a plugin. Complying with these requirements will help
in making Grade Calculation a proper base for the successor project of Drieam.

2.3 Function and purpose
Nowadays, many universities use Canvas as their LMS. Canvas offers functionality for sub-
mitting assessments, grading them, publishing grades and providing feedback. As this infor-
mation is already present in Canvas, it is reasonable to want to centralize all the information
of the course to the students by providing themwith their marks and grades. However, Can-
vas does not have sufficient capabilities to calculate partial or final grades. At many universi-
ties this creates an inconvenient situation for the administrationwhoneed to execute certain
tasks such as awarding ECTS credits. Grade Calculation will offer a more extensive alterna-
tive for thebuilt-in gradingworkflowofCanvas andwill provide away to facilitate an efficient
grading process. It will overcome the existing challenges in Canvas by the implementation of
the following functions:
• Defineafinal score structure: GradeCalculationallows fordefining complex score struc-
tures that are evaluated recursively.

• Final grade calculation: GradeCalculation can calculate, in aflexibleway, thefinal grade
of a course based onmarks obtained during the course and a grading scheme of choice.

• Importing marks: Teachers can import marks in Grade Calculation. These marks can
be obtained from assignments in Canvas, or imported from an external data source.
Optionally a final score structure and/or grading scheme can be applied to thesemarks
resulting in grades that can be published to students.

• Retrieval of data: Grade Calculation provides an endpoint so that the course results
can be retrieved, with the possibility of being submitted to the SIS in a confinedmanner.
This would allow for reducing manual labour in the registration process, to a minimum
(i.e. if SIS supports automatic grade registration fromadata source, it can be connected
to Grade Calculation so that nomanual work needs to be done).

2.4 Environment
Grade Calculation is going to be used in a web-based environment. Since the tool runs inside
theCanvas environment it is imperative that it supports all the browsers currently supported
by Canvas. The plugin itself will run on an external server and will be embedded into Canvas
by means of a frame. The plugin should therefore be developed such that it can be used cor-
rectly fromwithin a frame. Furthermore, since the plugin does not run on the same server as
Canvas, the external server does need to communicate with Canvas through its API.

10

Great Graders Software Requirements Document

Considering the fact that Canvas is developed using the Ruby on Rails framework and Re-
act, and the fact that Drieam works with these languages, Grade Calculation uses the same
framework in order to support maintainability and to simplify integration.
Regardingdatamanagement, PostgreSQL isuseddue to the fact thatDrieam’splatformmakes
use of this database. In addition, PostgreSQL provides various features that fit Grade Calcu-
lation’s requirements.

2.5 Relation toOther Systems
The main system related to Grade Calculation is Canvas. In fact, Grade Calculation depends
on Canvas in its entirety, as it is a plugin made specifically for Canvas. Grade Calculation is
not standalone andwill not function if Canvas is offline or otherwise unavailable.

2.5.1 Canvas
Grade Calculation is an LTI plugin for Canvas that streamlines the grading workflow for edu-
cational institutes. Currently there are no other plugins that attempt to replace the grading
workflow in Canvas. However, Canvas itself offers a grading environment that also includes
the calculation of grades, importing, and exporting grades. Yet, the grading environment of
Canvas is limited to a handful of actions. The limited possibilities of the grade process ca-
pabilities in Canvas gave rise to this project. Grade Calculation will replace the built-in grade
display andcalculationofCanvas itself. However, it is important tonote thatCanvas couldpo-
tentially extend their capabilities regarding grading workflow, which might decrease the ne-
cessity of Grade Calculation. However, no plans for such an extension have been announced,
and it is unlikely that all functionality will be added to Canvas in the near future.

2.6 General Constraints
2.6.1 Security and privacy
Grade Calculation should highly value the constraints of security and privacy. Since the plu-
gin will run on a separate server, steps need to be taken to ensure that the data is secured.
In order to prevent data from being exposed to third parties information needs to be trans-
ferred to the server in a secureway. It is therefore clear that only HTTPS connections should
be used between Canvas and the server, such that only encrypted data-communication is al-
lowed. This will also guarantee that information is not altered during transmission.

Users of Grade Calculation should not have access to information they are not authorized to
view. Therefore, Grade Calculation needs to inherit the permission scheme of Canvas and
only allow for data retrieval that adheres to the permissions of the user. The infamous SQL
injection could harm these permissions and possibly enable users to view data they are not
authorized to view. Moreover, SQL injection could harm integrity of data. Therefore, input
sanitation should be performed to prevent SQL injection and other such injection attacks.

Since Grade Calculation will be used by organizations, Grade Calculation will also need to
comply with the European General Data Protection Regulations (GDPR) [6]. This will create
some additional requirements for the software. In the case of Grade Calculation the most

11

Great Graders Software Requirements Document

relevant article in the GDPR is Art 25. (Data protection by design and by default). An impli-
cation of this article is the limited time frame that user data can be stored after graduation.
Therefore, it should be possible to remove the data after this time period ended. The other
rights of the data subjected in Ch. 2 of the GDPR are not strictly required, because either
these are to be implemented by the educational institution or because they are not required
due to the basis of processing.
Furthermore, only data that is strictly required for the proper functioning of Grade Calcula-
tion should be stored. Information that can be fetched from the Canvas API should only be
stored if this is needed for the proper functioning of Grade Calculation. Thus, if it does not
cause toomuch overhead, data is only fetched from the Canvas API and not stored by Grade
Calculation.
Art 25. of the GDPR is taken into account and as such, the specified technical and organiza-
tional techniques are used to protect data, for example pseudonymisation.

2.6.2 Usability
On theweb, users are used to navigating over sites andweb apps without needing additional
explanation. It is therefore clear that Grade Calculation should work intuitively in order for
Grade Calculation to be successful. Grade Calculation will accomplish this by trying to give
an acquainted feel to the users of Grade Calculation. The plugin will comply with the style
of Canvas by using native Canvas UI components, or UI components that provide a similar
look and feel, to increase usability. For components not available from Canvas, existing de-
sign libraries such as Ant Design will be used to again make the user feel familiar with the
interactions of the plugin.
A main task of a Teacher user of Grade Calculation is to define score structures. Multiple
options can be used to define these score structures. By providing clear input components,
the Teacher should knowwithwhat elements they can interactwith. Furthermore, text labels
will be placed appropriately so that it is more clear what the results of an interaction is. For
some teachers itmight notbe clear at first glancehowall options canbeused. Thus, a helpbox
on the page to define a score structure is available to provide somemore textual information
about how to enter a final score structure. Furthermore, a user manual is available for more
in depth information on all the options and how they can be used.

2.6.3 Environment
Grade Calculation is used in a web-based environment. As Grade Calculation is a Canvas LTI
plugin, it should support all the browsers which are supported by Canvas. For Grade Cal-
culation the supported browsers are: Google Chrome version 72/73, Mozilla Firefox ver-
sion 65/66, Safari version 11/12 forMacOS,Microsoft Internet Explorer version 11, andMi-
crosoft Edge version 42/44.

Grade Calculation is developed using Ruby, React, the Ruby on Rails framework, and the
Drieam framework. This is due to the fact that Canvas is developed using Ruby, React, and
Ruby on Rails, which simplifies integrating the LTI to Canvas and maintaining Grade Calcula-
tionwith respect to updates of Canvas. Additionally, theDrieam framework helps accelerate
the creation of the LTI plugin as Drieam designed it to be used in awide variety of LTI plugins.

Datamanagement in Grade Calculation is done using PostgreSQL. PostgreSQL is a relational
databasemanagement systemto store information. Itwas chosenas it providedGreatGraders

12

Great Graders Software Requirements Document

with all the functionality needed to meet Grade Calculation requirements. Moreover, Post-
greSQL is usedwithin Drieam’s platform.

2.6.4 Language
Canvas supports a variety of languages and is internationally used. As English is the default
language ofCanvas and is the standard international language, it is important thatGradeCal-
culation is implemented in English. Thus, Grade Calculation supports the English language
and canbe extended at a later stage to includedifferent languages. The front-endusesi18n-
reactwhich also simplifies new language extensions desired in the future.

2.6.5 Performance
A Canvas instance can have up to 50 thousand users. As Grade Calculation deals with the
marks, scores, and grades of users, Grade Calculation will also deal with a large part of these
50 thousand users. This means Grade Calculation should be able to support a vast amount of
users and be able to process the data belonging to these users.

It is expected that the final score calculation will calculate the grades for a single student
within 2 seconds. Importing marks from a CSV file is expected to take at most 60 seconds,
while exporting grades is expected to complete within 5 minutes. Changing the visibility of
marks or whether they are muted will be visible to the student within 30 seconds. These es-
timations are within the bounds formulated in the URD [1].

With regards to response times, it is expected that the front-end assets are compiled within
300,000 milliseconds and that for all subsequent actions the web interface will react within
200 milliseconds per action. These statistics are all based on the maximum response times
allowedwhile enabling a user-friendly and usable product.

Grade Calculation uses PostgreSQL as its relational database. As Grade Calculation needs to
support a vast amount of users all their datawill have to be processed aswell. Thismeans the
PostgreSQL database should be able to handle a vast amount of data and the queries that are
run on it.

2.6.6 Reliability
It is important to guarantee the functioning of GradeCalculation. If teaching institutes are to
use Grade Calculation, they will require a reliable tool that has a high uptime. When Grade
Calculation would be down, it would significantly harm the grading administration, as by de-
signmany stakeholders will rely on it.
Moreover, it is important that grades of students are correct and up to date. If a data-source
provides updated information it is the task of Grade Calculation to ensure that the updated
information is used in its process. For example, if a teacher is editing a final score structure
for one course, GradeCalculation should adjust the final score structure for only that course.

2.7 Model Description

13

Great Graders Software Requirements Document

2.7.1 EnvironmentModel
In Figure 2.1, one can see the Grade Calculation in its environment. The area in grey defines
the scope of Grade Calculation. The remainder is part of the existing environment.

14

Great Graders Software Requirements Document

Grade
Calculation
Database

CSV Import

API end-points to add
assignment results

API end-points to send
grades to SIS

CSV Export

Request

Navigates

Authenticated
Request

Response

Canvas

Canvas API Call

Grade Calculation Back-end

Grade
Calculation

Logic

Response

Grade Calculation Interface

Front End

Student Information
System (SIS)

API Response

Grade Calculation

Back End

Drieam LTI App
Framework

Figure 2.1: The Grade Calculation plugin in the environment

15

Great Graders Software Requirements Document

2.7.1.1 Canvas
Grade Calculation is a plugin within Canvas. A user navigates on the Canvas website and re-
quests to the Canvas server will be sent accordingly. The Canvas server will handle these re-
quests by sending the appropriate responses. The plugin will be hosted on an external server
and loaded in a frame. Therefore, some requests resulting from the Canvas responses will
then be sent to Grade Calculation in order to load the plugin into the frame. The responses
from the Canvas server allow for making authenticated requests towards Grade Calculation
so that Grade Calculation can provide user-specific data.

2.7.1.2 Student Information Systems (SIS)
SISs are software designed web-based applications that introduce a useful and structured
information flow environment for students, teachers, and the administration of a teaching
institute. A SIS will be able to obtain grades for the students fromGrade Calculation.

2.7.1.3 Grade Calculation Interface
The front-end ofGradeCalculation takes care of the proper visualization of data in theGrade
Calculation Interface,which is embedded into theCanvaswebsite. The front-endhandles the
user interaction by sending the appropriate requests to the back-end.

2.7.1.4 Drieam LTI Framework
The back-end of Grade Calculation will rely on the Drieam LTI framework. This framework is
provided by Drieam. The Drieam LTI framework allows for easy coupling with Canvas, facili-
tating processes such as authentication and data retrieval.

2.7.1.5 Grade Calculation back-end
The Grade Calculation back-end implements all server side functionality to be used by the
front-end. It serves as anextra control layerbetween the front-endand theback-enddatabase,
and it is responsible for authentication (using theDrieamLTI framework), providing the front-
endwith the correct data to be displayed, importing data fromCanvas, and reading from and
writing to the database.

2.7.1.5.1 Grade Calculation Logic The Grade Calculation Logic is one of the major mod-
ules of theGradeCalculation Back-endwhich implements all functionality with regard to the
calculation of the final grade. It receives the necessary data to perform calculations and re-
turns the calculated grades for each student.

2.7.1.6 Grade Calculation’s Database
The back-end database stores all necessary information that is needed for the full functional-
ity of Grade Calculation. It is a stand-alone database without any dependency on an external
database. The database will contain information about the courses, the students, the assess-
ments, themarks, and the grades.

16

Great Graders Software Requirements Document

2.7.1.7 API endpoints
The back-end exposes two API endpoints: one that allows other systems to input marks into
Grade Calculation, and one that allows for obtaining partial and final grades fromGrade Cal-
culation.

2.7.1.8 CSV import and export
Apart from the endpoints, the back-end has the ability to import CSV files with marks and
export CSV files with grades.

2.7.2 Class Diagram

Score

+ value: Numeric
+ type: String

MarkNode

+ assessmentId: String
+ gradingType: String
+ max: Numeric/Boolean

Constant

+ gradingType: String
+ value: Numeric/Boolean
+ max: Numeric/Boolean

AssessmentCheck

+ validateAssessments(assessments:Hash): void

TreeBuilder

+ buildLevel(partOfStructure: Hash): Node

CalculationNode

+ calculationMethod: CalculationMethod
+ args: Hash
+ children: [Node]
+ nodeName: String
+ nodeId: String
+ requirement: Numeric

ZeroToTen1Decimal

ZeroToTenInteger

LetterUS

LetterUK

PercentageZeroToTen2Decimal

Sum

PrecheckRequirements

+ checkRequirement(requirements: Hash, marks: Hash): Boolean

MarkAdjustment

+ calculateMark(value: String, assessmentInfo:Hash, id:Symbol): Rational or String

GradeCalculationLogicEndpoint

+ buildTree(json:Hash):Node

+ assessmentCheck(assessments: Hash, tree: Node):Hash

+ mapIdName(tree: Node): Hash

+ gradeCalculation(tree: Node, assessmentInfo: Hash,
gradingScheme: String, studentMarks: Hash): Hash

DisplayMarkEndpoint

+ transformMark(gradingScheme: String, mark: String,
assessmentInfo: Hash, assessmentId: String): String

GradingSchemeHandler

+ convertToGradingScheme(gradingScheme: String): Class

+ convertToAssociatedGradingScheme(
gradingScheme: String): Class

ZeroToTenHalf ZeroToTenHalfWithout55

MandatoryCheck

+ mandatory(assessmentInfo:Hash, marks:Hash): Boolean

<<interface>
GradingSchemeInterface

+ compute(score: Score): String

CustomGradingScheme

+ id: String

+ name: String

+ description: String

+ boundaries: Hash

+ schemes():[GradingSchemeInterface]

<<interface>
Node

+ calculateScore(studentMarks: Hash,
partialScores: Hash, failures: Hash,
assessmentInfo: Hash): Score

<<interface>>
CalculationMethod

+ calculate(scores: [Score], args: Hash): Score

WeightedAverage

BestWorstXOfY

Latest

UnweightedAverage

MaximumMinimum

Figure 2.2: UMLGrade Calculation Logic Class diagram
Sections 2.7.2.1 to 2.7.2.5 refer to the class diagram for the Grade Calculation logic module
found in Figure 2.2.

2.7.2.1 Tree construction
2.7.2.1.1 TreeBuilder The TreeBuilder class offers a single functionality: its purpose is to
turnavalid inputhash into the tree structure thatGradeCalculationuses to calculate student

17

Great Graders Software Requirements Document

grades.
This class has the followingmethod:
• buildLevel(partOfStructure: Hash): Node
Takes in a valid hash according to specifications, and uses it to recursively construct the
tree structure. It returns the root Node of the tree.

2.7.2.1.2 Node The Node is an interface that is used to define the methods of the other
tree node classes.
This interface has the followingmethod:
• calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentInfo:
Hash): Score
Every Node should in someway, using its attributes and/or parameters, be able to pro-
duce a Score object.

2.7.2.1.3 CalculationNode TheCalculationNode class represents the calculationof apar-
tial score within the final score structure.
An instance of this class has the following attributes:
• calculationMethod: CalculationMethod
• args: hash containing parameters for the calculation
• children: array of children nodes of this calculation node
• nodeName: string
• nodeId: unique string within the final score structure
• requirement: number greater than or equal to 0

An instance of this class has the followingmethod:
• calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentInfo:
Hash): Score
Stores the calculation result in partialScores using the nodeId as a key, and returns the
calculation result. Additionally, before returning it checks if the calculation resultmeets
the requirement, and if not, adds a failure description to failures using nodeId as a key.

2.7.2.1.4 MarkNode TheMarkNode class represents an assessmentmarkwithin the final
score structure.
An instance of this class has the following attributes:
• assessmentId: a unique string or symbol for an assessment
• gradingType: a string that defines what kind of assessment the class represents, either
‘percentage’ or ‘points’

• max: themaximummark for this assessment
An instance of this class has the followingmethod:
• calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentInfo:
Hash): Score
Looks up the assessmentId in the studentMarks hash, calls the MarkAdjustment class
with the found value, and returns the result.

18

Great Graders Software Requirements Document

2.7.2.1.5 Constant TheConstant class represents auser-definedconstant in thefinal score
structure. An instance of this class always returns the same value regardless of the marks of
the student.
An instance of this class has the following attributes:
• gradingType: a string that defineswhat kind of constant the class represents, ‘percent-
age’ is converted to ‘points’ for internal consistency

• value: the value of this constant
• max: themaximum of this constant, used for turning the value into a fraction

An instance of this class has the followingmethod:
• calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentInfo:
Hash): Score
Returns a Score that represents the value of this constant.

2.7.2.2 CalculationMethods
2.7.2.2.1 CalculationMethod The CalculationMethod class is an interface that is used to
unify the implementation of the other calculationmethod classes.
This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Every calculation method has a method calculate that accepts two arguments: scores:
[Score] and args: Hash. Each calculationmethod requires different arguments, which
are stored in the args hash. This hash may be empty for some calculation methods, but
should not be nil.

2.7.2.2.2 WeightedAverage TheWeightedAverage class computes theweighted average
of a set of scores.
For this class the args hash contains the following key/value pairs:
• weights: [Hash]
One weight per score. Weights are fractions as a hash of the form { numerator: int,
denominator: int }

This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Calculates theweighted average of a set of scores using the specified set of weights for
each score. These weights are found in the args hash.

2.7.2.2.3 UnweightedAverage The UnweightedAverage class calculates the unweighted
average of a set of scores.
For this class the args hash does not contain key/value pairs.
This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Calculates the unweighted average of a set of scores.

2.7.2.2.4 BestWorstXOfY The BestWorstXofY class is used to compute the unweighted
average of the best or worst x scores of the received y scores, with the option of setting cer-
tain scores to always count.
For this class the args hash contains the following key/value pairs:

19

Great Graders Software Requirements Document

• x: int
howmany assignments should count

• always_counts: [boolean]
One boolean per score. A boolean is set to true if the corresponding score should al-
ways be included in the average.

• best_worst: boolean
A boolean set to ‘true’ if best x out of y is desired, and to ‘false’ if worst x out of y is
desired.

This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Calculates theunweightedaverageof thebestorworst x scoresof the receivedy scores,
including those scores set to always count.

2.7.2.2.5 MaximumMinimum TheMaximumMinimumclass that takeseither theminimum
or themaximum of a list of scores.
For this class the args hash contains the following key/value pairs:
• maximum: boolean
A boolean set to true if maximum score is desired and to false if minimum.

This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Findseither themaximumorminimumscore in scoresdependingon themaximumvalue
in the args hash.

2.7.2.2.6 Latest The Latest class takes the latest score of a set of scores.
For this class the args hash contains the following key/value pairs:
• dates: [date]
Array of dates with one date per score.

This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Finds the latest available score in scores by checking the ‘dates’ array in the args hash

2.7.2.2.7 Sum The Sum class takes the minimum between 1 (equivalent to 100%) and the
sum of a set of scores.
For this class the args hash does not contain key/value pairs.
This class has the followingmethod:
• calculate(scores: [Score], args: Hash): Score
Calculates the sum of a set of scores, which is capped at 1.

2.7.2.3 Grading schemes
2.7.2.3.1 GradingScheme GradingScheme is an interface that is implemented by all grad-
ing scheme classes, except for GradingSchemeHandler, allowing for a modular use of the
grading schemes. This class has the followingmethod:
• compute(score: Score): string
Every grading scheme should convert a Score object to some string.

20

Great Graders Software Requirements Document

2.7.2.3.2 GradingSchemeHandler The GradingSchemeHandler class has the function of
transforming a string input to the corresponding grading scheme class.
This class has the followingmethods:
• convertToGradingScheme(gradingScheme: string): Class
Converts a string input to the corresponding class.

• convertToAssociatedGradingScheme(gradingScheme: string): Class
Given a string input that corresponds to the grading scheme for the final grade, returns
the corresponding partial grade grading scheme.

2.7.2.3.3 ZeroToTenInteger The ZeroToTenInteger class is a class that converts a score
input to an integer between 0 and 10.
This class has the followingmethod:
• compute(score: Score): string
Converts a score to an integer grade between 0 and 10.

2.7.2.3.4 ZeroToTen1Decimal TheZeroToTen1Decimal class is a class that converts a score
input to a number between 0 and 10 accurate to one decimal.
This class has the followingmethod:
• compute(score: Score): string
Converts a score to a number grade between 0 and 10 accurate to one decimal.

2.7.2.3.5 ZeroToTen2Decimal TheZeroToTen2Decimal class is a class that converts a score
input to a number between 1 and 10 accurate to two decimals.
This class has the followingmethod:
• compute(score: Score): string
Converts a score to a number grade between 0 and 10 accurate to two decimals.

2.7.2.3.6 ZeroToTenHalf The ZeroToTenHalf class is a class that converts a score input to
a number between 0 and 10, rounded to the nearest half.
This class has the followingmethod:
• compute(score: Score): string
Converts a score to a number grade between 0 and 10, rounded to the nearest half.

2.7.2.3.7 ZeroToTenHalfWithout55 TheZeroToTenHalfWithout55class is a class that con-
verts a score input to a number between 0 and 10, rounded to the nearest half, with the ex-
clusion of 5.5.
This class has the followingmethod:
• compute(score: Score): string
Converts a score to an number grade between 0 and 10, rounded to the nearest half,
with the exclusion of 5.5.

2.7.2.3.8 LetterUK The LetterUK class is a class that converts a score input to a letter
following the UK scheme.
This class has the followingmethod:
• compute(score: Score): string
Converts a score to a letter grade following the UK scheme.

21

Great Graders Software Requirements Document

2.7.2.3.9 LetterUS The LetterUS class is a class that converts a score input to a letter fol-
lowing the US scheme.
This class has the followingmethods:
• compute(score: Score): string
Converts a score to a letter grade following the US scheme.

2.7.2.3.10 Percentage ThePercentage class is a class that converts a score input toanum-
ber between 0 and 100 accurate to two decimals.
This class has the followingmethods:
• compute(score: Score): string
Converts a score to a number grade between 0 and 100 accurate to two decimals.

2.7.2.3.11 CustomGradingScheme The CustomGradingScheme class can be used to de-
fine custom grading schemes on certain boundary conditions. It will convert a score into a
string using these boundary conditions.
This class has the followingmethods:
• compute(score: Score): string
Converts a score to a grade based on the boundary conditions.

2.7.2.4 Data Types
2.7.2.4.1 Score The Score class is a data type that is used internally for passing typed val-
ues between classes.
An instance of this class has the following attributes:
• type: the type of the score, either ‘points’ or ‘excused’
• value: the value of the score, as a fraction between 0 and 1, inclusive.

2.7.2.5 Miscellaneous
2.7.2.5.1 GradeCalculationLogicEndpoint The GradeCalculationLogicEndpoint class is a
singleton that provides access to the overarching functionality in the Grade Calculation logic
module. It is essentially a facade for the Grade Calculation logic module.
This class has the followingmethods:
• buildTree(json: Hash): Node
Thismethod is forbuildinga tree fromaHash, it directly references toTreeBuilder.buildLevel.

• assessmentCheck(assessments: Hash, tree: Node): Hash
Thismethod checks if all assessments in the given tree are also found in assessmentswith
the same details. It returns a hash with found inconsistencies.

• mapIdName(tree: Node): Hash
Thismethod iterates through the tree, and returns a hash,mapping all nodeIds to node-
Names for all CalculationNodes.

• gradeCalculation(tree: Node, markRequirements: Hash, gradingScheme: string, student-
Marks: Hash): Hash
This method calculates the partial and final grades of a student, using the marks of
the student in studentMarks, the final score structure tree, the grading scheme grad-
ingScheme, and themark requirementsmarkRequirements.

22

Great Graders Software Requirements Document

2.7.2.5.2 PrecheckRequirements The PrecheckRequirements class has a single function:
to check if a set of requirements is met by a set of marks.
This class has the followingmethods:
• checkRequirement(requirements: Hash, marks: Hash): Boolean
This method checks if all marks inmarksmeet their associated requirements specified
in requirements, returning true if they do, returning false if any mark does not meet its
requirement.

2.7.2.5.3 DisplayMarkEndpoint The DisplayMarkEndpoint class has a single function: to
convert a mark for display to the user according to the grading scheme.
This class has the followingmethod:
• convertMark(gradingScheme: String,mark: String, assessmentInfo: Hash, assessmentId: String):
String
This method converts the mark according to the grading scheme. If the mark is ’com-
plete’, ’incomplete’, or ’excused’, then it returns the achieved mark, otherwise it alters
themark.

2.7.2.5.4 AssessmentCheck The AssessmentCheck class has a single function: it checks
if a given assessments hash is valid. This class has the followingmethod:
• validateAssessments(assessments: Hash): void
This method validates if a given assessments hash is valid. All keys should be assess-
ment IDs, and the values should be hashes containing information about the associated
assessment. It checks those values as well, and throws an error if any information is
incorrect.

2.7.2.5.5 MarkAdjustment TheMarkAdjustment class has a single function: to adjust the
value of amark. This class has the followingmethod:
• calculateMark(value: String, assessmentInfo: Hash): Rational or String
This method converts an original value for a mark into an adjusted value that accounts
for factors such as no shows andmark adjustment.

23

Great Graders Software Requirements Document

GradeCalculationLogicEndpoint

+ buildTree(json:Hash)

+ assessmentCheck(assessments: Hash, tree: Node)

+ mapIdName(tree: Node)

+ gradeCalculation(tree: Node, assessmentInfo: Hash,
gradingScheme: String, studentMarks: Hash)

Assessment

+ course: Course

+ canvasAssignmentId: Integer

+ assesssmentType:String

+ name: String

+ markType: String

+ maxScore:String

+ markAdjustment: Boolean

+ adjustmentBase: Float

+ adjustmentMultiplier: Float

+ muted: Boolean

+ published: Boolean

+ attemptNumber: Integer

+ dueDate: Time

+ minimumRequirement: String

+ createdAt: Time

+ updatedAt: Time

+ assessmentHash(): Hash

Course

+ canvasId: Integer

+ gradingScheme: String

+ scoreStructure: JSON

+ draftScoreStructure: JSON

+ scoreDescription: String

+ createdAt: Time

+ updatedAt:Time

+ assessmentsHash(): Hash

Grade

+ gradeDefinition: GradeDefinition

+ student: Student

+ grade: String

+ createdAt: Time

+ updatedAt:Time

+ passed: Boolean

GradeDefinition

+ course: Course

+ gradeId: String

+ name: String

+ muted: Boolean

+ published: Boolean

+ createdAt: Time

+ updatedAt:Time

Student

+ course: Course

+ canvasId: Integer

+ sisId: String

+ createdAt: Time

+ updatedAt:Time

+ marksHash(): Hash

Mark

+ assessment: Assessment

+ student: Student

+ mark: String

+ score: String

+ createdAt: Time

+ updatedAt:Time

+ logicMark(): String

+ updateScore(assessment: Assessment): void

BaseImporter

- canvasApi: CanvasApi

+ synchronizeObjects(canvasObjects: Array, databaseObjects: Array, field: Symbol)

createNewObject(canvasObject: Hash, course: Course)

updateObject(canvasObject: Hash, databaseObject: Record)

recordClass: Class

DatabaseImporter

+ saveToDatabase(toAdd: Array, toDestroy: Array, toChange:Array): void

MarkImporter

- canvasApi: CanvasApi

+ import(): void

CsvMarkImporter

+ import(csv: Table, assessment: Assessment): void

StudentImporter

+ import(): void

extends

AssessmentImporter

+ import(): void

extends

CsvExporter

+ export(course: Course): void

GradeCalculator

+ calculate(course: Course)

CanvasApi

- courseId: Integer

+ getCourseStudents(): Array

+ getAssignments(): Array

+ getSubmissions(assignmentId: Integer): Array

+ getPermissions(): Hash

Use

Use Use

Use

Use
Use

Use

Use

Use Use

Use

Use

Use

Use

Use

Use

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

Figure 2.3: UML Back-end Class diagram
Sections 2.7.2.6 to 2.7.2.9 refer to the class diagram for the general back-end ofGradeCalcu-
lation found in Figure 2.3.

2.7.2.6 Databasemodels
2.7.2.6.1 Course Course is the class that corresponds to the database object. A course
represents to a single Canvas course and stores course-wide attributes. An instance of this
class has the following attributes:
• canvasId: an integer that defines the ID of this course in Canvas
• gradingScheme: a string that defines the grading scheme used in this course
• scoreStructure: a JSON structure that defines the score structure for this course
• draftScoreStructure: a JSON structure that defines the draft score structure for this
course which corresponds to the saving of progress by a teacher.

• scoreDescription: a string that defines the score description shown to the student for
this course

• createdAt: the time at which the course was initially created in Grade Calculation

24

Great Graders Software Requirements Document

• updatedAt: the time at which one of the course’s attributes was last changed
This class has the followingmethods:
• assessmentsHash(): Hash
This method returns a hash of assessments as input into the Grade Calculation logic
endpoint. For each assessment, the key will be the assessments’s ID and the value will
be the value of the assessment’s assessmentHashmethod.

2.7.2.6.2 Assessment Assessment is the class that corresponds to the database object.
Anassessment corresponds to either a singleCanvas assignmentor to anassessment created
by a teacher. An instance of this class has the following attributes:
• course: a reference to the course that this assessment belongs to
• canvasAssignmentId: an integer that defines the ID of this assignment in Canvas if the
assessmentType is ”canvas"

• assessmentType: a string that defines the type of this assessment, which is either ”can-
vas" or ”import", which corresponds to a Canvas assignment or a teacher-created as-
sessment respectively

• name: a string that defines the name of the assessment
• markType: a string thatdefines themark typeof theassessment,which is either ”points",
”percentage", or ”complete_incomplete".

• maxScore: a string that is either ”complete" for ”complete_incomplete" assessments or
a numeric float for all other mark types.

• markAdjustment: a boolean that defines whether mark adjustment is enabled for all
marks of this assessment.

• adjustmentBase: a float that defines themark adjustment base that is either null if the
markAdjustment is false or a positive number if it is true

• adjustmentMultiplier: a float that defines themark adjustmentmultiplier that is either
null if themarkAdjustment is false or a positive number if it is true

• muted: a boolean that defines whether this assessment’s marks are muted for the stu-
dent. For Canvas assignments, this value is taken from Canvas and cannot be changed
by the teacher.

• published: a boolean that defineswhether this assessment is published for the student.
For Canvas assignments, this value is taken fromCanvas and cannot be changed by the
teacher.

• attemptNumber: an integer that defines which attempt this is. The value will be null if
this is not part of a multiple attempt or if it is the first attempt, while it will be 1 if this is
the second attempt, 2 if it is the third attempt, etc.

• dueDate: the time at which this assessment is due. For Canvas assignments, this value
is taken fromCanvas and cannot be changed by the teacher.

• minimumRequirement: a string that defines theminimum requirement for this assess-
ment, which is either null, a number, or ”complete", ”incomplete", ”no_show", ”excused".

• createdAt: the time at which the assessment was initially created in Grade Calculation
• updatedAt: the time at which one of the assessment’s attributes was last changed

This class has the followingmethods:

25

Great Graders Software Requirements Document

• assessmentHash(): Hash
This method returns a hash of the values that should be passed as input into the Grade
Calculation logic module. The keys are defined by the Grade Calculation logic module
andare ”grading_type", ”minimum_requirement", ”mark_adjustment", ”adjustment_base",
”adjustment_multiplier", ”max", ”repeated_attempt" and ”repeated_attempt_assessment_id".

2.7.2.6.3 GradeDefinition GradeDefinition is the class that corresponds to the database
object. A grade definition corresponds to either the final grade or a partial grade defined in
the score structure. An instance of this class has the following attributes:
• course: a reference to the course that this grade definition belongs to
• gradeId: a string that correspondswith the ”node_id" of the partial grade. It can also be
either ”final" for the final grade or ”mandatory" for themandatory assessments grade.

• name: a string thatdefines thenameof this gradedefinition,which is either the ”node_name",
"Final Grade", or "Mandatory Assessments"

• muted: a boolean that defines whether this definition’s grades are muted for the stu-
dent

• published: a boolean that defineswhether this grade definition is published for the stu-
dent

• createdAt: the time at which the grade definition was initially created in Grade Calcu-
lation

• updatedAt: the time at which one of the grade definition’s attributes was last changed

2.7.2.6.4 Student Student is the class that corresponds to the database object. A student
corresponds to either a single Canvas userwith the role student. An instance of this class has
the following attributes:
• course: a reference to the course that this student belongs to
• canvasId: an integer that defines the ID of this user in Canvas
• sisId: a string that defines the SIS ID of this student, as returned by Canvas
• createdAt: the time at which the student was initially created in Grade Calculation
• updatedAt: the time at which one of the student’s attributes was last changed

This class has the followingmethods:
• marksHash(): Hash
This method returns a hash of the assessment ID’s to the marks of this student, as de-
fined by the Grade Calculation logic module.

2.7.2.6.5 Mark Mark is the class that corresponds to the database object. A mark is the
result of a single assessment for a single student. An instance of this class has the following
attributes:
• assessment: a reference to the assessment that this mark is for
• student: a reference to the student that this mark is for
• mark: a string that defines the value of suchmark
• score: a string that defines the value of suchmark after applying a grading scheme.

26

Great Graders Software Requirements Document

• createdAt: the time at which themark was created
• updatedAt: the time at which one of themark’s attributes was last changed

This class has the followingmethods:
• logicMark(): String
This method returns the score for input into the Grade Calculation logic module. It will
either be ”excused" , ”complete",”incomplete", ”no_show" or be a number between 0 and
the assessment’s maxScore.

• updateScore(assessment:Assessment)
This method updates the score value whenever the mark value or the assessment’s
markAdjustment is changed.

2.7.2.6.6 Grade Grade is the class that corresponds to the database object. A grade is
the output of the Grade Calculation logic module of a single grade for a single student. An
instance of this class has the following attributes:
• gradeDefinition: a reference to the grade definition that this grade is for
• student: a reference to the student that this grade is for
• grade: a string that defines the returned value of the grade, according to the grading
scheme

• passed: a boolean that defineswhether this grade is seen as a pass, which is only set for
the final grade

• createdAt: the time at which the gradewas created
• updatedAt: the time at which one of the grade’s attributes was last changed

2.7.2.7 Database object updaters
2.7.2.7.1 DatabaseImporter DatabaseImporter is autility class that is used for saving changes
to the database in a uniformway. This class has the following static method:
• saveToDatabase(toAdd: Array, toDestroy: Array, toChange: Array): void
Thismethodwill start a database transaction and then insert all records in toAdd to the
database, delete all records in toDestroy from the database and update all records in
toChange in the database. Finally, it will end the transaction and commit all changes to
the database.

2.7.2.7.2 BaseImporter BaseImporter is an abstract class that can be extended from to
synchronize Canvas objects to Grade Calculation database objects. An instance of this class
has the following attributes:
• canvasApi: a reference to the Canvas API that can be used by the importer, which also
contains a reference to the current course

This class has the followingmethods:
• synchronizeObjects(canvasObjects: Array, databaseObjects: Array, field: Symbol): void
Thismethodwill use the abstractmethods andfind the toAdd, toDestroy and toChange
parameters for theDatabaseImporter using the field argument.

This class has the following abstract methods:

27

Great Graders Software Requirements Document

• createNewObject(canvasObject: Hash, course: Course): Record
This method will be called when a new database record needs to be created. The can-
vasObject and course can be used to construct the database record.

• updateObject(canvasObject: Hash, databaseObject: Record): Record
Thismethodwill be calledwhen a database record could be updated. The databaseOb-
ject should be updated based on the information found in canvasObject and returned.

• recordClass(): Class
Thismethod should return the class of the database record that is used in this importer,
e.g. Student for StudentImporter.

2.7.2.7.3 AssessmentImporter AssessmentImporter is a class that is used to import Can-
vas assessments into the Grade Calculation database. This class has the followingmethods:
• import(): void
This method will retrieve all Canvas and database assessments and then use synchro-
nizeObjects of its parent class to synchronize the two.

2.7.2.7.4 StudentImporter StudentImporter is a class that is used to import Canvas users
with the student role into the Grade Calculation database. This class has the followingmeth-
ods:
• import(): void
Thismethodwill retrieve all Canvas anddatabase students and thenuse synchronizeOb-
jects of its parent class to synchronize the two.

2.7.2.7.5 MarkImporter MarkImporter is a class that is used to import Canvasmarks into
the Grade Calculation database. An instance of this class has the following attributes:
• canvasApi: a reference to the Canvas API that can be used by the importer to get all
students which also contains a reference to the current course

This class has the followingmethods:
• import(): void
This method will retrieve all Canvas and databasemarks and then construct the differ-
ence and pass it toDatabaseImporter’s saveToDatabase.

2.7.2.7.6 GradeCalculator GradeCalculator is a class that is used to calculate all grades of
a course and save them to the database. This class has the followingmethods:
• calculate(course: Course): void
This method will call the Grade Calculation logic module’s endpoint to calculate the
grades of every student and then save them to the database.

2.7.2.8 CSV import and export
2.7.2.8.1 CsvMarkImporter MarkImporter is a class that is used to importmarks into the
Grade Calculation database from a CSV file. This class has the followingmethods:
• import(csv: Table, assessment: Assessment): void
This method will take in a parsed CSV file and an assessment and update or create the
marks for every student in the file.

28

Great Graders Software Requirements Document

2.7.2.8.2 CsvExporter CsvExporter is a class that is used to export grades into a CSV file.
This class has the followingmethods:
• export(course: Course): String
This methodwill export the grades of all students of a course to a CSV string.

2.7.2.9 Miscellaneous
2.7.2.9.1 CanvasApi CanvasApi is a utility class that is used for connecting to the Canvas
API. An instance of this class has the following attributes:
• courseId: an integer that defines the current course ID such that the Canvas API is al-
ways called for the correct course

This class has the followingmethods:
• getCourseStudents(): Array
Thismethodwill call theCanvasAPI ”List users in course" endpointwith the enrollment
type filtered to student and return all pages in a single array.

• getAssignments(): Array
This method will call the Canvas API ”List assignments" endpoint and return all pages
in a single array.

• getSubmissions(assignmentId: Integer): Array
Thismethodwill call theCanvasAPI ”List assignment submissions" endpoint and return
all pages in a single array.

• getPermissions(): Hash
This method will call the Canvas API ”Permissions" endpoint and return the value as a
hash.

2.7.3 DataModel
The data model for Grade Calculation is represented as an Entity Relationship diagram pre-
sented below in Figure 2.4. It describeswhich data is being stored and how that data is struc-
tured in the databases required by Grade Calculation. The databases provided by Drieam
are not components of Grade Calculation, therefore they are not included in this diagram.
Following the figure, a description of each entities in the datamodelwith a corresponding ex-
planation of their attributes is provided.

29

Great Graders Software Requirements Document

2.7.3.1 Database Diagram

Course
id

canvas_id

grading_scheme

score_structure

draft_score_structure

score_description

created_at

updated_at

Assessments
id

assessment_type

canvas_assignment_id

name

mark_type

max_score

mark_adjustment

adjustment_base

adjustment_multiplier

muted

published

attempt_number

due_date

minimum_requirement

created_at

updated_at

Grades
id

grade

created_at

updated_at

Marks
id

mark

score

created_at

updated_at

Students
id

canvas_id

sis_id

created_at

updated_at

Receives

Enrolls

Gets graded

Has

Has
Legend
One
Many
One (and only one)
Zero or one
One or many
Zero or many

Grade Definitions
id

name

muted

published

created_at

updated_at

Has

is defined by

Attempt of

Figure 2.4: ERDatamodel

2.7.3.1.1 Course
A course entity represents a course that is provided in the educational institute. Courses

30

Great Graders Software Requirements Document

have the following properties:
• id: a sequential number which is unique per course, representing the id of the course
on Grade Calculation

• canvas_id: a number unique per course, representing the id of the course on Canvas.
• grading_scheme: a string, representing the grading scheme of choice to be applied in
all scores within that course.

• score_structure: a JSON object, representing the final score calculation structure.
• draft_score_structure: a JSON array, representing a final score calculation struc-
ture that has not yet been finalized.

• score_description: A string that is a textual description of the score structure
• created_at: a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the course was created.

• updated_at: a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the course was implemented.

2.7.3.1.2 Assessment
An assessment represents an exam, an assignment, a quiz, etc. within a course. Assessments
have the following properties:
• id: a sequential number which is unique per assessment, representing the id of the
assessment on Grade Calculation

• course_id: an integer, that will link an assessment to a specific course
• assessment_type: a string, whose value is either “canvas" or “import". It represents
the type of assessment depending on fromwhich sourcemarks will be imported.

• canvas_assignment_id: a number, uniqueper assessment, representing the id of the
assignment on Canvas.

• name: a string, representing the name this assessment is assigned, either from Canvas
or it is created when creating an imported assessmentmanually.

• mark_type: a string, whose value is either “points", “complete_incomplete" or “per-
centage". It represents the type of marks the assessment expects.

• max_score: will be “complete" if mark_type is “complete_incomplete", otherwise it will
contain a number, representing the maximum score that can be obtained for the as-
sessment. This will be equal to the upper-bound of the mark if grade_type is equal to
“points" or “percentage".

• mark_adjustment: a boolean which is set to be true when all marks for this assess-
ment need to be adjusted

• adjustment_base: a positive number representing the amount of points that are al-
ways added to a student’s mark in themark adjustment process

• adjustment_multiplier: a positive number which represents the number by which
themark of the student will bemultiplied in themark adjustment process.

• muted: A boolean which is set to be true when all marks for this assessment are not
visible to students, or is set to be false otherwise.

• published: A boolean which is set to be true when the assessment itself and its asso-
ciatedmarks are not visible to students, or is set to be false otherwise.

31

Great Graders Software Requirements Document

• attempt_assessment_id: a uniquenumber, thatwill link an assessment that is anxth
(x ∈ N+) attempt of the original assessment.

• attempt_number: an integer representing the x (x ∈ N+) in the xth attempt.
• due_date: is a timestamp without time zone, representing the last moment at which
an assessment can be submitted.

• minimum_requirement: A string, representing the minimum score needed to avoid
failing the course.

• created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the assessment was created.

• updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the assessment was implemented.

2.7.3.1.3 Marks
Amark represents the result a student is given for an assessment.
• id: a sequential number which is unique per mark, representing the id of the mark on
Grade Calculation

• assessment_id: an integer, that will link amark to a specific assessment.
• student_id: an integer, that will link amark to a specific student.
• mark: canbeempty, contain anumberor containoneof “complete", “incomplete", “no_show",
or “excused" representing the result the student obtained for that assessment.

• score: can be empty, contain a number or contain one of “complete", “incomplete",
“no_show", or “excused" representing the result the student obtained for that assess-
ment as a display value, which can bemark adjusted based on the assessment informa-
tion

• created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time themark was created.

• updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in themark was implemented.

2.7.3.1.4 Grades

• id: a sequential number which is unique per grade, representing the id of the grade on
Grade Calculation

• student_id: an integer, that will link a grade to a specific student.
• grade_definition_id an integer, linking a grade to the corresponding grade defini-
tion.

• grade: a string representing the actual grade the student has obtained
• passed: a boolean representingwhether this grade is a pass, only set if this grade is for
the final grade or for themandatory assessments

• created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the gradewas created.

• updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the gradewas implemented.

32

Great Graders Software Requirements Document

2.7.3.1.5 Students

• id: a sequential numberwhich is unique per student, representing the id of the student
on Grade Calculation

• canvas_id: a number, unique per student within a course, representing the ID of the
student on Canvas.

• course_id: an integer, that will link a student to a specific course.
• sis_id: A unique string within a course, representing the student ID used in the Stu-
dent Information System.

• created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the student profile was created.

• updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails,which represents the time the last change in the studentprofilewas implemented.

2.7.3.1.6 Grade Definitions

• id: a sequential numberwhich is unique per grade definition, representing the id of the
grade definition on Grade Calculation

• course_id: an integer, that will link a grade definition to a specific course.
• grade_id: an integer, which is unique per node in the final score structure per course,
representing the id of the grade used in Grade Calculation.

• name: a string representing how the grade definition is addressed to. The name will be
inherited from the node_name.

• muted: A booleanwhich is set to be truewhen allmarks for this grade definition are not
visible to students, or is set to be false otherwise.

• published: A boolean which is set to be true when the grade definition itself and its
associated grades are not visible to students, or is set to be false otherwise.

• created_at: is a time stampwithout a time zone, created automatically byRuby sends
the time the grade definition was created.

• updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails,which represents the time the last change in thegradedefinitionwas implemented.

2.7.3.2 JSON Structure
A specification was created in order to allow for consistent storing and retrieving of score
structures as JSON objects.
This is a recursive structure that consists of a root node specification, possibly with nested
children nodes.

2.7.3.2.1 Calculation Node A calculation node represents a set of assessments with an
associated calculation.
A calculation node requires the following fields:
• node_type: =’calculation’, specifies that this node is a calculation node
• node_name: the string name of this node, used for display purposes

33

Great Graders Software Requirements Document

• node_id: the unique id of this node, used for keeping track of partial scores
• calculation_type: a string, specifying exactly what calculation is associated with this
node

• args: an object of arguments to be passed to the calculation
• children: an array of children node specifications, allowing for the recursive tree struc-
ture

• requirement: theminimum requirement on this partial score, may be nil

2.7.3.2.2 Mark Node Amark node represents a single assessment.
Amark node requires the following fields:
• node_type: =’mark’, specifies that this node is a mark node
• assessment_id: specifies what assessment this node represents
• grading_type: specifieswhat typeof grade theassessment is, either ’points’ or ’percent-
age’

• max: specifies themaximummark that can be obtained for the associated assessment

2.7.3.2.3 Constant Node A constant node represents a constant fraction, such as 5/10.
A constant node requires the following fields:
• node_type: =’constant’, specifies that this node is a constant node
• grading_type: specifies whether this constant is a percentage or points type
• value: the value of the constant
• max: the maximum of the constant. This is needed because a value of 5 out of 10 is
different from 5 out of 20.

34

Great Graders Software Requirements Document

2.7.4 Sequence Diagrams
2.7.4.1 Student Interface
2.7.4.1.1 Student opens Grade Calculation Student Interface
Students canopenGradeCalculation. Todo this the student navigates inCanvas to theGrade
Calculation tab. After selecting this tab, the student user is able to see the grades view if the
database can be reached, otherwise the student receives an error page.
Goal: Student opens the Grade Calculation Student Interface in Canvas.
Precondition:
The actor is enrolled as a Student for the specific course.
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
A final score structure has been created for computing the final score.
A grading scheme has been selected for computing the final grade.

Postcondition: All published assessments and assessment sets included in the final score
structure are displayed and for those which are not muted, the mark, or grade for this spe-
cific student are displayed.
Summary: The actor can view their own marks, partial grades, and final grade in the Grade
Calculation Student Interface in Canvas.
Priority:Must have

Figure 2.5: Student opens Grade Calculation Student Interface

35

Great Graders Software Requirements Document

2.7.4.1.2 Student exports marks and grades using a CSV file
Students can export their marks, partial grades, and final grades in Grade Calculation. To do
this they will need to navigate in Canvas to the Grade Calculation tab. If the database can be
reached, the student user is able to select the export option, otherwise the student receives
an error page.
Goal: Student exports their marks, partial grades, and the final grade using a CSV file.
Precondition:
The actor is enrolled as a Student in the specific course.
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: Themarks, partial grades, and final grade of the actor are stored in a CSV file.
Summary: The actor can export their own marks, partial grades, and final grade such that
they are saved in a CSV file.
Priority:Won’t have

Figure 2.6: Student exports marks and grades to CSV

36

Great Graders Software Requirements Document

2.7.4.2 Teacher interface
2.7.4.2.1 Teacher opens Grade Calculation Teacher Interface
Teachers can open Grade Calculation. To do this they will need to navigate to the Grade Cal-
culation tab inCanvas. If thedatabase is accessible, the teacher user is able to see theTeacher
Interface, otherwise the teacher receives an error page.
Goal: Teacher opens the Grade Calculation Teacher Interface in Canvas.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: If a final score structure exists, it is displayed, otherwise anempty score struc-
ture is displayed.
Summary: Theactor requests thepageofGradeCalculation. Thepage is displayed inTeacher
interface, which contains all functionality of the plugin.
Priority:Must have

Figure 2.7: Teacher opens Grade Calculation Teacher Interface

37

Great Graders Software Requirements Document

2.7.4.2.2 Teacher defines or edits a grading scheme
Teachers defines anewgrading schemeor edits an existing one inGradeCalculation. Todo so,
they need to select the create grading scheme option and build the desired grading scheme.
Goal: Teacher defines a new grading scheme or edits an existing one.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
The database is accessible.
Postcondition: The grading scheme is saved into the database.
Summary: The Teacher defines the grading scheme that is used for the calculation of the final
grade.
Priority:Won’t have

Figure 2.8: Teacher defines or edits grading scheme

38

Great Graders Software Requirements Document

2.7.4.2.3 Teacher defines or edits final score structure and selects a grading scheme
Teachers defines a new final score structure or edits an existing one. Moreover the teacher
must select a grading scheme, since a final score structure cannot be validated without it.
This is done using the “Grading Structure" view of the Teacher Interface to build the desired
structure and select the desired grading scheme.
Goal: Teacher defines a new final score structure or edits an existing one and selects a grad-
ing scheme. All of which will be used to determine the final grade.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
All assessments are defined.
The database is accessible.
Postcondition: Thefinal score structureand selectedgrading schemeare saved in thedatabase
Summary: The final score structure and grading scheme are defined by the teacher.
Priority:Must have

Figure 2.9: Teacher defines or edits final score structure and selects grading scheme

39

Great Graders Software Requirements Document

2.7.4.2.4 Teacher views audit logs
Teachers viewsaudit logs inGradeCalculationwhichdisplays the changes thatoccurredwithin
the plugin.
Goal: Teacher views audit logs.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: The final score structure that the actor wishes to edit is modified.
Summary: The actor is able to view the audit logs of the plugin. This way the actor can inves-
tigate potential problems.
Priority: Should have

Figure 2.10: Teacher views audit logs

40

Great Graders Software Requirements Document

2.7.4.2.5 Teacher filters audit logs
Teachers wants to view the audit logs to which a specific filter applies.
Goal: Teacher filters audit logs.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The actor has navigated to the audit logs view.
The specific course has Grade Calculation enabled.
Postcondition: The audit logs to which the filter applies are displayed.
Summary: The actor is able to view the filtered audit logs of the plugin. This way the actor
can investigate potential problems.
Priority:Won’t have

Figure 2.11: Teacher views audit logs

41

Great Graders Software Requirements Document

2.7.4.2.6 Teacher computes the final grade
Teacherswants to compute the final grade using the final score structure and grading scheme
defined in Grade Calculation. To do this, the teachermustmanually select the option to com-
pute final grades.
Goal: Teacher computes the final grade for each Student.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged in Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
A final score structure has been created and saved.
A grading scheme has been selected.
The database is accessible.
Postcondition: The final grade for each student is computed and stored.
Summary: When the teacher desires to compute the final grade (e.g. the term ended), the
final grade must be computed. The defined final score structure is used to calculate the final
score, which is then converted to the final grade using the grading scheme.
Priority:Must have

42

Great Graders Software Requirements Document

Figure 2.12: Teacher computes final grade

43

Great Graders Software Requirements Document

2.7.4.2.7 Teachermutes grade
Teachers wants hide a specific grade to the students. To do so the teacher has to select the
mute options of that specific grade.
Goal: Teacher mutes the grade.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
The specific grade is unmuted
Postcondition: A grade is muted.
Summary: The actor mutes a grade. This grade is no longer visible to the Students.
Priority: Should have

Figure 2.13: Teacher mutes grade

44

Great Graders Software Requirements Document

2.7.4.2.8 Teacher unmutes grade
Teachers wants make a specific grade visible to students. To do so the teacher has to select
the unmute options of that specific grade.
Goal: Teacher unmutes the grade.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
The specific grade is muted
Postcondition: A grade is unmuted.
Summary: The actor unmutes a grade. This grade becomes visible for the Students.
Priority: Should have

Figure 2.14: Teacher unmutes grade

45

Great Graders Software Requirements Document

2.7.4.2.9 Teacher filters in the set of marks and grades
Teachers defines a filter condition such that only marks and grades that fulfil this condition
are shown to the Teacher.
Goal: Teacher can apply filters to the set of marks, partial grades, and final grades.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged in Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
The database is accessible.
Postcondition: Filtered items are returned to the actor, such that the actor can view them.
Summary: Theactor applies filters to the items available. Thefilters get applied and the items
get returned to the actor.
Priority: Could have

Figure 2.15: Teacher filters in the set of marks and grades

46

Great Graders Software Requirements Document

2.7.4.2.10 Teacher imports marks using a CSV
Teachers wants to import themarks for a specific assessment, to do so the teacher uploads a
CSV file containing the marks for this assessment. If marks have already been imported for
this assessment, uploading newmarks for this assessment will updated the storedmarks.
Goal: Teacher imports marks using a CSV file.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: Themarks of the assessment are uploaded to the database.
Summary: Theactor imports themarksof a single assessment for all students to thedatabase.
Priority: Should have

Figure 2.16: Teacher imports marks using a CSV file

47

Great Graders Software Requirements Document

2.7.4.2.11 Teacher imports a final score structure from another course
If the Teacher desires to re-use a final score structure from a different course, the teacher
must select the import score structure option and specify from which course the desired
structure to be imported from.
Goal: Teacher can import a final score structure from another course.
Precondition:
The actor is enrolled as a Teacher for the specific courses.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
The course the actor wishes to copy the final score structure from has a final score structure
defined.
Postcondition: The final score structure is accessible in the target course.
Summary: The actor imported the final score structure from another course into the current
course, and the final score structure is defined for such current course.
Priority: Could have

Figure 2.17: Teacher imports a final score structure from another course

48

Great Graders Software Requirements Document

2.7.4.2.12 Teacher exports to CSV file
Teacher desires to export a set of marks, partial and/or final grades into a CSV file.
Goal: Teacher exports marks, partial grades and/or final grades with the corresponding SIS
IDs to a CSV file.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: The final grades, partial grades, and/or marks with the corresponding SIS IDs
are stored in a CSV file.
Summary: The actor can export final grades, partial grades, and/or marks with the corre-
sponding SIS IDs such that they are saved in a CSV file.
Priority: Should have

Figure 2.18: Teacher exports to CSV file

49

Great Graders Software Requirements Document

2.7.4.2.13 Teacher performs a test calculation
The teacher can perform a test calculation in Grade Calculation. To do this they need to navi-
gate to the Grade Calculation tab in Canvas. After this action they can enter test marks, and
trigger the calculation.
Goal: The Teacher can insert test marks to evaluate the outcome of a final score structure.
Precondition:
The actor is enrolled as a Teacher for the specific course.
The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
The final score structure the actor wants to do a test calculation for is defined.
The database is accessible.
Postcondition: The actor obtains a final grade for the final score structure using the test
marks as input.
Summary: The actor can perform a test calculation using input marks and a predefined final
score structure and grading scheme.
Priority: Could have

Figure 2.19: Teacher makes a test calculation

50

Great Graders Software Requirements Document

2.7.4.3 Administrator interface
2.7.4.3.1 Administrator opens Grade Calculation Teacher Interface for any course
Administrators canopenGradeCalculation. Todo this theywill need to navigate to theGrade
Calculation tab in Canvas. If the database is accessible, the user is able to see the Teacher In-
terface, otherwise the teacher receives an error page.
Goal: Administrator opens the Grade Calculation Teacher Interface in a specific course in
Canvas.
Precondition:The actor is an Administrator.
The actor is logged into Canvas.
The course the actor wants to access exists.
The specific course has Grade Calculation enabled.
Postcondition: The Teacher interface of Grade Calculation is shown for the accessed course.
Summary: Theactor requests theGradeCalculationTeacher Interface for theaccessedcourse.
Grade Calculation will show the Teacher interface for this course.
Priority: Could have

Figure 2.20: Administrator opens Grade Calculationfor any course

51

Great Graders Software Requirements Document

2.7.4.3.2 Administratordefinesoredits thefinal score structureandselects grading scheme
Administrator defines a new final score structure or edits an existing one in Grade Calcula-
tion. Moreover, since a final score structure cannot be validated without a grading scheme,
the administrator must select a grading scheme. To do this they need to use the “Grading
Structure" view in the Teacher Interface to build the desired structure, and select their de-
sired grading scheme.
Goal: Administrator defines a new final score structure or edits an existing one and selects
a grading scheme, all of which will be used to determine the final grade.
Precondition:
The actor is an Administrator.
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
All assessments are defined.
The database is accessible.
Postcondition: The final score structure and the selected grading scheme are saved into the
database.
Summary: The actor defines the final score structure that will be used to calculate the final
score whenever necessary.
Priority: Could have

52

Great Graders Software Requirements Document

Figure 2.21: Administrator defines or edits final score structure and selects grading scheme

53

Great Graders Software Requirements Document

2.7.4.3.3 Administrator views audit logs
Administrators views audit logs inGradeCalculationwhich displays the changesmadewithin
the plugin.
Goal: Administrator views audit logs.
Precondition:
The actor is an Administrator.
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: The audit logs are displayed.
Summary: The actor is able to view the audit logs of the plugin. This way the actor can inves-
tigate potential problems.
Priority: Could have

Figure 2.22: Administrator views audit logs

54

Great Graders Software Requirements Document

2.7.4.3.4 Administrator filters audit logs
Administrator wants to view the audit logs to which a specific filter applies.
Goal: Administrator filters audit logs.
Precondition:
The actor is enrolled as a Administrator for the specific course.
The actor is logged into Canvas.
The actor has navigated to the specific course.
The actor has navigated to the audit logs view.
The specific course has Grade Calculation enabled.
Postcondition:Only the audit logs for which the filter applies are displayed.
Summary: The actor is able to view the filtered audit logs of the plugin. This way the actor
can investigate potential problems.
Priority:Won’t have

Figure 2.23: Administrator filters audit logs

55

Great Graders Software Requirements Document

2.7.4.3.5 Administrator exports to CSV
Administrator desires to export a set of marks, partial and/or final grades into a CSV file.
Goal: Administrator exportsmarks, partial grades and/or final gradeswith the corresponding
SIS IDs to a CSV file.
Precondition:
The actor is enrolled as a Administrator for the specific course.
The actor is logged into Canvas.
The actor has navigated to the specific course.
The specific course has Grade Calculation enabled.
Postcondition: The final grades, partial grades, and/or marks with the corresponding SIS IDs
are stored in a CSV file.
Summary: The actor can export final grades, partial grades, and/or marks with the corre-
sponding SIS IDs such that they are saved in a CSV file.
Priority: Could have

Figure 2.24: Administrator exports to CSV

56

Great Graders 3.1.1.1

Chapter 3
Specific Requirements
In this chapter, all software requirements of the product to be developed are specifically
stated. The software requirements are based on tequirements as stated in the URD [1]. For
prioritizing requirements, the MoSCoW model is used [7]. The capital letters in MoSCoW
stand for:
Priority Abbreviation Explanation
Must have M These requirementswill be implementedby the endof this

project.
Should have S These requirements should ideally but not essentially be

implemented during this project.
Could have C These requirements will be implemented if there is still

time available after having implemented the ’Must have’
and ’Should have’ requirements.

Won’t have W These requirements will not be implemented during this
project and could be implemented in a later project.

3.1 Functional Requirements
3.1.1 Student Interface
3.1.1.1 Attributes

SR - 1 Must have
course: object
An object describing all variables set by a teacher or administrator including
thegrading schemeused, thedescriptionof thefinal score structure, thefinal
score structure itself, all assessments, and the grade definitions.

SR - 2 Must have
marks: array

57

Great Graders Software Requirements Document

SR - 2 Must have
An array of marks obtained by the student. Every element is an object which
holds the assessment ID, the date of change, and themark and score the stu-
dent received.

SR - 3 Must have
grades: array
An array of the grades obtained by the student. Every element is an object
which holds the assessment ID, the date of change, the grade the student
received, andwhether this grade is seen as a pass.

3.1.1.2 Operations

SR - 4 Must have
convert_json_data_source(): array
Transformsa JSONobject into anarraywhich canbedisplayed in the student
interface.Input
• final_score_structure: JSON object
• course: object
• marks: array
• grades: array

Precondition
• final_score_structure 6= NULL
• final_score_structure is defined as described in 2.7.3.2.
• course 6= NULL
• marks 6= NULL
• grades 6= NULL

Postcondition
• The transformed JSON object is returned.

3.1.2 Teacher Interface - Grading Structure
3.1.2.1 Attributes

SR - 5 Must have
grading_schemes: array
An array that contains all the different grading schemes the teacher can se-
lect.

SR - 6 Must have
course: object
An object describing all variables previously saved by a teacher or adminis-
trator including the grading scheme used, the description of the final score
structure, the final score structure itself, all assessments, and the grade defi-
nitions.

58

Great Graders Software Requirements Document

3.1.2.2 Operations

SR - 7 Could have
import_final_score_structure(): void
The teacher imports the final score structure from another course.
Input
• course_id: integer

Precondition
• course_id exists in the database.
• course_id 6= NULL.

Postcondition
• A final score structure from the course selected by the teacher is
loaded to the current course’s “Grading Structure" view.

• The result is displayed to the teacher.
• If the source course has different assessments than the target course,
then the teacher is notified.

SR - 8 Must have
select_grading_scheme(): void
The teacher selects the grading scheme they desire.
Input
• grading_scheme_name: string

Precondition
• grading_scheme_name 6= NULL

Postcondition
• The teacher selects the grading scheme they desire and the choice is
saved to the database.

• The result is displayed to the teacher.

SR - 9 Should have
edit_description(): void
Teacher can edit the description of the final score structure.
Input
• description: string

Postcondition
• The teacher edits the description of the final score structure and all
edits are saved to the database.

• The result is displayed to the teacher.

SR - 10 Must have
add_assessment(): void
The teacher adds an assessment to an assessment set in the final score struc-
ture.

59

Great Graders Software Requirements Document

SR - 10 Must have
Input
• assessment_set_child_array: array
• minimum_requirement :string, float or nil
• assessment_name: string
• grading_type: string
• max: float
• due_date: Time
• weight: float or nil

Postcondition
• The chosen assessment is now a child of the assessment set.
• The result is displayed to the teacher.

SR - 11 Should have
delete_assessment(): void
The teacher deletes an assessment from the final score structure.
Postcondition
• The chosen assessment is deleted from the final score structure.
• The result is displayed to the teacher.

SR - 12 Should have
edit_assessment(): void
The teacher edits an assessment in the final score structure.
Input
• weight: integer
• min_requirement: string
• name: string

Postcondition
• The variables of the assessment are overwritten by the input.
• The result is displayed to the teacher.

SR - 13 Could have
add_constant(): void
The teacher adds a constant to an assessment set in the final score struc-
ture.Input
• name: string
• value: number

Postcondition
• The constant is now a child of the assessment set.
• The result is displayed to the teacher.

SR - 14 Must have
add_assessment_set(): void

60

Great Graders Software Requirements Document

SR - 14 Must have
The teacher adds an assessment set to the final score structure.
Input
• weight: float
• min_requirement: float
• name: string
• calculation_type: string

Postcondition
• The assessment set with the input variables is displayed in the final
score structure.

SR - 15 Should have
delete_assessment_set(): void
The teacher deletes an assessment set from the final score structure.
Precondition
• The children array of the assessment set must be empty.

Postcondition
• The chosen assessment set and all of its children are deleted from the

final score structure.
• The result is displayed to the teacher.

SR - 16 Should have
edit_assessment_set(): void
The teacher edits an assessment set in the final score structure.
Input
• weight: integer
• min_requirement: string
• name: string
• calculation_type: string

Postcondition
• The variables of the assessment set are overwritten by the input.
• The result is displayed to the teacher.

SR - 17 Must have
add_multiple_attempts(): void
The teacher creates a newattempt for an assessment in the final score struc-
ture.Input
• assessment: MarkNode
• calculationMethod: string

Postcondition
• Anassessment setwith thegivencalculationmethod is created inplace
of the original assessment. The original assessment, alongwith its new
attempt, are added to this assessment set.

• The result is displayed to the teacher.

61

Great Graders Software Requirements Document

SR - 18 Could have
add_condition_component(): void
The teacher creates a new condition block in the final score structure.
Input
• condition: string
• choice1: array
• choice2: array

Precondition
• The two choice arrays are defined.

Postcondition
• The condition block is added to the assessment set.
• The result is displayed to the teacher.

SR - 19 Must have
save(): void
The selected grading scheme, final score structure, and thedescriptionof the
final score structure are saved to the database.Input
• grading_scheme_name: string
• translated_final_score_structure: array
• description: string

Postcondition
• The selected grading scheme, final score structure, and the description
of the final score structure are saved to the database.

SR - 20 Must have
submit(): void
The final score structure is validated and if the validation tests pass the final
score structure is submitted to the database.Input
• grading_scheme_name: string
• translated_final_score_structure: array
• description: string

Postcondition
• If all validation tests are passed, the final score structure, the selected
grading schemeand thedescription is saved to thedatabase. The result
is then displayed to the teacher.

• If at least one of the validation tests fail, an error is thrown.

SR - 21 Could have
warning(): void
A warning is shown to the Teacher if they define the final score structure
before defining assignments in Canvas.

62

Great Graders Software Requirements Document

SR - 21 Could have
Precondition
• No assignments defined in Canvas.

Postcondition
• Thewarning is shown to the teacher.

SR - 22 Could have
notifyTeacher(): void
The teacher is notified tomanually recompute the final and partial grades, if
a change in themarks, final score structure, or the grading scheme is made.Precondition
• A change is made in the marks, final score structure, or the grading
scheme.

Postcondition
• The pop-up is shown to the teacher stating that they should recom-
pute the final and partial grades.

3.1.3 Teacher Interface - Student Grades
3.1.3.1 Attributes

SR - 23 Must have
course: object
An object describing all variables previously saved by a teacher or adminis-
trator including the grading scheme used, the description of the final score
structure, the final score structure itself, all assessments, and the grade defi-
nitions.

SR - 24 Must have
users: array
Anarraywhich contains elements holding theuser’s nameand themarks and
grades that correspond to this user.

3.1.3.2 Operations

SR - 25 Should have
mute(): void
The teacher mutes an assessment so that the students can no longer see
the result.

63

Great Graders Software Requirements Document

SR - 25 Should have
Input
• assessment_id: string

Precondition
• The assessment is unmuted.

Postcondition
• The assessment is nowmuted.
• The result is displayed to the teacher.

SR - 26 Should have
unmute(): void
The teacherunmutes anassessment so that the students can see the result.
Input
• assessment_id: string

Precondition
• The assessment is unmuted.

Postcondition
• The assessment is unmuted.
• The result is displayed to the teacher.

SR - 27 Should have
mute_set(): void
The teacher mutes an assessment set so that the students can no longer
see the result.Input
• assessment_id: string

Precondition
• The assessment set is unmuted.

Postcondition
• The assessment set is nowmuted.
• The result is displayed to the teacher.

SR - 28 Should have
unmute_set(): void
The teacher unmutes an assessment set so that the students can see the
result.Input
• assessment_id: string

Precondition
• The assessment set is unmuted.

Postcondition
• The assessment set is unmuted.
• The result is displayed to the teacher.

64

Great Graders Software Requirements Document

SR - 29 Could have
filter(): void
The teacher applies a filter condition to the student grades table to only
show students that fall within this filter condition.Input
• filter: string

Postcondition
• Only the students and the corresponding grades are displayed for the
students that fall within the filter condition.

SR - 30 Should have
mark_adjustment(): void
The teacher applies a mark adjustment to an assessment’s marks using a
formula they defined.Input
• base: number
• multiplier: number

Postcondition
• The adjusted marks are shown to the teacher in place of the original
marks.

SR - 31 Should have
search(): void
The teacher applies a search condition to the student grades table to only
show students that fall within this search condition.Input
• search: string

Postcondition
• Only the students and the corresponding grades aredisplayed for the
students that fall within the search condition.

SR - 32 Could have
test_calculation(): void
Teacher enters marks for assessments to do a test calculation to check the
final score structure.input
• marks: array
• translated_final_score_structure: array

Precondition
• translated_final_score_structure 6= NULL
• translated_final_score_structure is defined as described in 2.7.3.2.

Postcondition
• The calculated final score is displayed to the teacher.

65

Great Graders Software Requirements Document

SR - 33 Should have
display_logs(): void
The teacher views audit logs.
input
• course_id: integer

Precondition
• course_id exists in the database.
• course_id 6= NULL.

Postcondition
• Audit logs of the course are retrieved.
• The result is displayed to the teacher.

3.1.3.3 DataSource-JSONConversion

SR - 34 Must have
convert_data_source_json(): JSON object
Transforms the array which is used for display into a JSONObject.
Input
• translated_final_score_structure: array

Precondition
• translated_final_score_structure 6= NULL
• translated_final_score_structure is defined as described in 2.7.3.2.

Postcondition
• The transformed final score structure object is returned as a JSONob-
ject.

3.1.4 Administrator Interface - Grading Structure
3.1.4.1 Attributes

SR - 35 Could have
grading_schemes: array
An array that contains all the different grading schemes the administrator
can select.

SR - 36 Could have
course: object
An object describing all variables previously saved by a teacher or adminis-
trator including the grading scheme used, the description of the final score
structure, the final score structure itself, all assessment, and the grade defi-
nitions.

3.1.4.2 Operations

66

Great Graders Software Requirements Document

SR - 37 Could have
select_grading_scheme(): void
The administrator selects the grading scheme they desire.
Input
• grading_scheme_name: string

Precondition
• grading_scheme_name 6= NULL

Postcondition
• The administrator selects the grading scheme they desire and the
choice is saved to the database.

• The result is displayed to the administrator.

SR - 38 Could have
save(): void
The selected grading scheme, final score structure, and the description of
the final score structure are saved to the database.Input
• grading_scheme_name: string
• translated_final_score_structure: array
• description: string

Postcondition
• The selected grading scheme, final score structure, and the descrip-
tion of the final score structure are saved to the database.

SR - 39 Could have
submit(): void
The final score structure is validated and if the validation tests pass the final
score structure is submitted to the database.Input
• grading_scheme_name: string
• translated_final_score_structure: array
• description: string

Postcondition
• If all validation tests are passed, the final score structure, the selected
grading scheme and the description is saved to the database. The re-
sult is displayed to the administrator.

• If at least one of the validation tests fail, an error is thrown.

SR - 40 Could have
add_assessment(): void
The administrator adds an assessment to an assessment set in the final
score structure.

67

Great Graders Software Requirements Document

SR - 40 Could have
Input
• assessment_set_child_array: array
• assessment: MarkNode
• weight: string

Postcondition
• The chosen assessment is now a child of the assessment set.
• The result is displayed to the administrator.

SR - 41 Could have
delete_assessment(): void
The administrator deletes an assessment from the final score structure.
Postcondition
• Thechosenassessment andall of its childrenaredeleted fromthefinal
score structure.

• The result is displayed to the administrator.

SR - 42 Could have
edit_assessment(): void
The administrator edits an assessment in the final score structure.
Input
• weight: integer
• min_requirement: string
• name: string

Postcondition
• The variables of the assessment are overwritten by the input.
• The result is displayed to the administrator.

SR - 43 Could have
add_constant(): void
The administrator adds a constant to an assessment set in the final score
structure.Input
• name: string
• value: number

Postcondition
• The constant is now a child of the assessment set.
• The result is displayed to the administrator.

SR - 44 Could have
add_assessment_set(): void
The administrator adds an assessment set to the final score structure.

68

Great Graders Software Requirements Document

SR - 44 Could have
Input
• weight: float
• min_requirement: float
• name: string
• calculation_type: string

Postcondition
• The assessment set with the input variables is displayed in the final
score structure.

• The result is displayed to the administrator.

SR - 45 Could have
delete_assessment_set(): void
The administrator deletes an assessment set from the final score structure.
Postcondition
• The chosen assessment set and all of its children are deleted from the

final score structure.
• The result is displayed to the administrator.

SR - 46 Could have
edit_assessment_set(): void
The administrator edits an assessment set in the final score structure.
Input
• weight: integer
• min_requirement: string
• name: string
• calculation_type: string

Postcondition
• The variables of the assessment set are overwritten by the input.
• The result is displayed to the administrator.

SR - 47 Could have
add_multiple_attempts(): void
Theadministrator creates anewattempt for anassessment in thefinal score
structure.Input
• assessment: MarkNode

Postcondition
• An assessment set ofmaximum calculation method is created in place
of theoriginal assessment. Theoriginal assessment, alongwith its new
attempt, are added to this assessment set.

• The result is displayed to the administrator.

69

Great Graders Software Requirements Document

SR - 48 Could have
add_condition_component(): void
TheAdministrator creates a newconditionblock in thefinal score structure.
Input
• condition: string
• choice1: array
• choice2: array

Precondition
• The two choice arrays are defined.

Postcondition
• The condition block is added to the assessment set.
• The result is displayed to the teacher.

3.1.5 Administrator Interface - Student Grades
3.1.5.1 Attributes

SR - 49 Could have
course: object
An object describing all variables previously saved by the teacher or admin-
istrator including grading scheme used, description of the final score struc-
ture, the final score structure itself, all assessment, and grade definitions.

SR - 50 Could have
users: array
An array which contains elements holding the user’s name and the marks
and grades that correspond to this user.

3.1.5.2 Operations

SR - 51 Could have
display_logs(): void
The administrator views audit logs.
input
• course_id: integer

Precondition
• course_id exists in the database.
• course_id 6= NULL.

Postcondition
• Audit logs of the course are retrieved.
• The result is displayed to the administrator.

3.1.5.3 DataSource-JSONConversion

70

Great Graders Software Requirements Document

SR - 52 Could have
convert_data_source_json(): JSON object
Transforms the array which is used for display into a JSONObject.
Input
• translated_final_score_structure: array

Precondition
• translated_final_score_structure 6= NULL
• translated_final_score_structure is defined as described in 2.7.3.2.

Postcondition
• The transformedfinal score structureobject is returned as a JSONob-
ject.

3.1.6 Course
3.1.6.1 Attributes

SR - 53 Must have
grading_scheme: string
The representation of the grading scheme used in the course.

SR - 54 Must have
score_structure: json
The representation of the final score structure used in the course. Matches
the specification described in 2.7.3.2

SR - 55 Should have
score_structure_description: string
The description of the score structure added by the teacher

3.1.7 Assessment
3.1.7.1 Attributes

SR - 56 Must have
course: Course
A reference to the course this assessment belongs to

SR - 57 Must have
name: string
The name of the assessment

71

Great Graders Software Requirements Document

SR - 58 Must have
mark_type: string
The representation type of the type of mark expected, either ‘points’, ‘per-
cent’, or ‘complete_incomplete’

SR - 59 Must have
required: string or float
Theminimum requiredmark for this assessment to pass the course, depend-
ing on themark_type

SR - 60 Should have
mark_adjustment: boolean
Determines whether this assessment’s marks are adjusted using the ad-
justment_base and adjustment_multiplier

SR - 61 Should have
adjustment_base: float
Determines n in n+m · points obtained

total number of points when the assessment’s marks aremark adjusted

SR - 62 Should have
adjustment_multiplier: float
Determinesm inn+m · points obtained

total number of points when the assessment’smarks aremark adjusted

3.1.8 Student
3.1.8.1 Attributes

SR - 63 Should have
name: string
The name of this student in Canvas

SR - 64 Should have
student_id: string
The SIS ID of this student

SR - 65 Must have
course: Course
A reference to the course this student belongs to

72

Great Graders Software Requirements Document

3.1.9 Mark
3.1.9.1 Attributes

SR - 66 Must have
max: String
Themaximum value that this mark can have

SR - 67 Must have
assessment_id: String
The assessment this mark belongs to

SR - 68 Must have
student_id: String
The student this mark belongs to

SR - 69 Must have
value: String
The value a student obtained for an assessment. This can be ’complete’,
’incomplete’, ’no_show’, ’excused’, or a string containing the numeric value
achieved.

SR - 70 Must have
grading_type: String
The type of the mark,which can be ’points’, ’percentage’ or ’com-
plete_incomplete’.

3.1.9.2 Operations

SR - 71 Must have
transform(): score
Takes amark and converts it into a score
Postcondition
• the parameters of the mark are the parameters of the returned score
object

SR - 72 Should have
adjust(): number or string
Adjusts the value of amark (score

max_score ·multiplier + base)

73

Great Graders Software Requirements Document

SR - 72 Should have
Input
• score: float
• max_score: float
• base: float
• multiplier: float

Postcondition
• The adjustedmark is returned

3.1.10 Grade
3.1.10.1 Attributes

SR - 73 Must have
student: Student
A reference to the student which the grade belongs to

SR - 74 Must have
grade_id: string
The unique ID of the grade in the score structure, final if this grade repre-
sents the final grade, or mandatory if this grade represents the mandatory
assessments

SR - 75 Must have
grade: string
Represents the grade the student has received, which can be ‘excused’, ‘pass’,
‘fail’, ‘N/A’ or a string returned by the grading scheme

SR - 76 Should have
muted: boolean
Determines whether the grade is muted

SR - 77 Should have
updated_at: date
Determines when the gradewas last updated

3.1.10.2 Operations

SR - 78 Should have
convert_fail(): void
If the grade is ’fail’, replaces it with constant instead.

74

Great Graders Software Requirements Document

SR - 78 Should have
Input
• constant : string

Precondition
• For each student the final grade is calculated and is set to "fail" if not
all minimum requirements aremet.

Postcondition
• For all students of the course, each course grade that is already in the
database, is updatedwith the possibly changed grade

3.1.11 Score
3.1.11.1 Attributes

SR - 79 Must have
value: rational or nil
The value of the score, can be numeric or ’excused’

SR - 80 Must have
type: string
The representation type of the value, either ‘points’ or ‘excused’

3.1.12 Constant
3.1.12.1 Attributes

SR - 81 Could have
value: numeric
The value of the constant

SR - 82 Could have
max: numeric
The maximum value of the constant, used for turning the constant into a
fraction

3.1.12.2 Operations

SR - 83 Could have
transform(): score
Returns the value of the constant as a Score object

75

Great Graders Software Requirements Document

SR - 83 Could have
Postcondition
• the parameters of the constant are the parameters of the returned
score.

3.1.13 CalculationMethod
3.1.13.1 Unweighted average
3.1.13.1.1 Operations

SR - 84 Must have
calculate(): score
Takes an array of scores and computes the unweighted average
Input scores: array of score objects
Postcondition
• the unweighted average is returned as a score object

3.1.13.2 Weighted average
3.1.13.2.1 Operations

SR - 85 Must have
calculate(): score
Takes an array of scores and an array of weights and computes the weighted
averageInput
• scores: array of score objects
• weights: array of weights

Precondition
• all elements of scores are of type scorewith type points
• allweights input as percentages are transformed into fractions.
• all elements ofweights add up to one
• scores andweights are of the same length

Postcondition
• the weighted average is returned as a score object

3.1.13.3 Best x of y
3.1.13.3.1 Operations

SR - 86 Should have
calculate(): score

76

Great Graders Software Requirements Document

SR - 86 Should have
Takes an array of scores, an array of booleans and an integer x and computes
the unweighted average of the best given scores, always including the scores i
for which boolean i is trueInput
• scores: array of score objects
• always_counts: array of booleans
• x: int

Precondition
• x is smaller than or equal to size of the array of scores
• The sizes of the arrays are equal.
• The number of “true" valued booleans is smaller than or equal to x

Postcondition
• The best x of y is returned as a score object

3.1.13.4 Worst x of y
3.1.13.4.1 Operations

SR - 87 Should have
calculate(): score
Takes an array of scores, an array of booleans and an integer x, and computes
the unweighted average of the worst given scores, always including the scores i
for which boolean i is trueInput
• scores : array of score objects
• always_counts : array of booleans
• x : int

Precondition
• x is smaller than the array size of scores
• The sizes of the arrays are equal.
• The number of “true" valued booleans is smaller than or equal to x

Postcondition
• Theworst x of y is returned as a score object

3.1.13.5 Sum
3.1.13.5.1 Operations

SR - 88 Should have
calculate(): score
Takes an array of scores, computes the sum of score values, and takes the mini-
mum of that sum and 1Input
• scores: array of score objects

Postcondition
• The result is returned as a score object

77

Great Graders Software Requirements Document

3.1.13.6 Subtraction
3.1.13.6.1 Operations

SR - 89 Should have
calculate(): score
Takes an array of scores, computes the subtraction of the first score value and
the rest of the scores valuesInput
• scores: array of score objects

Postcondition
• The result is returned as a score object

3.1.13.7 Maximum
3.1.13.7.1 Operations

SR - 90 Should have
calculate(): score
Takes an array of scores, returns the maximum score value
Input
• scores: array of score objects

Postcondition
• The result is returned as a score object

3.1.13.8 Minimum
3.1.13.8.1 Operations

SR - 91 Should have
calculate(): score
Takes an array of scores, returns the minimum score value
Input
• scores: array of score objects

Postcondition
• The result is returned as a score object

3.1.14 Condition
3.1.14.1 Operations

SR - 92 Could have
calculate(): score
Takes two scores and a condition, and returns the first score if the condition holds,
otherwise it returns the second score

78

Great Graders Software Requirements Document

SR - 92 Could have
Input
• score1: score object
• score2: score object
• condition: statement that evaluates to true or false

Postcondition
• The result is returned as a score object

3.1.15 Grading schemes
3.1.15.1 Grading scheme handler
3.1.15.2 Operations

SR - 93 Must have
apply(): string
Takes a score and a grading scheme, and returns the grade obtained by applying
the grading scheme to the scoreInput
• score: score object
• grading_scheme: grading scheme object

Postcondition The result is returned as a string

3.1.15.3 0-10 rounding to nearest integer
3.1.15.3.1 Operations

SR - 94 Must have
compute(): string
Takes a score and returns the grade obtained by applying the 1 to 10 integer grad-
ing scheme to the scoreInput
• score: score object

Postcondition The result is returned as a string

3.1.15.4 0-10 rounding to 1 decimal
3.1.15.4.1 Operations

SR - 95 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to one decimalInput
• score: score object

Postcondition The result is returned as a string

79

Great Graders Software Requirements Document

3.1.15.5 0-10 rounding to 2 decimals
3.1.15.5.1 Operations

SR - 96 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to two decimalsInput
• score: score object

Postcondition The result is returned as a string

3.1.15.6 0-10 rounding to nearest half
3.1.15.6.1 Operations

SR - 97 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to the nearest halfInput
• score: score object

Postcondition The result is returned as a string

3.1.15.7 0-10 rounding to nearest quarter
3.1.15.7.1 Operations

SR - 98 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to the nearest quarterInput
• score: score object

Postcondition The result is returned as a string

3.1.15.8 UK letter grade
3.1.15.8.1 Operations

SR - 99 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which transforms the score to an UK letter gradeInput
• score: score object

Postcondition The result is returned as a string

80

Great Graders Software Requirements Document

3.1.15.9 US letter grade
3.1.15.9.1 Operations

SR - 100 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which transforms the score to an US letter gradeInput
• score: score object

Postcondition The result is returned as a string

3.1.15.10 Percentage
3.1.15.10.1 Operations

SR - 101 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which transforms the score to an percentageInput
• score: score object

Postcondition The result is returned as a string

3.1.16 Grade Calculator
3.1.16.1 Operations

SR - 102 Must have
calculate(): void
Calculates the grades by the defined course score structure, for each student in
course, using the marks in the database and stores them in the database.

81

Great Graders Software Requirements Document

SR - 102 Must have
Input
• course: Course entry

Precondition
• All marks used in the score structure, are in the database for each stu-
dent of the course.

• The score structure of the course has been defined and matches the
specifications listed in 2.7.3.2.

• The grading scheme of the course has been defined.
Postcondition
• For each student the partial grades are calculated
• For each student the final grade is calculated and is set to "fail" if not all
minimum requirements aremet.

• For all students of the course, each course grade that is not in the
database, is added to the database

• For all students of the course, each course grade that is already in the
database, is updatedwith the possibly changed grade

• For all students of the course, each course grade in the database that is
not a grade anymore, is removed from the database

SR - 103 Could have
count(): void
Counts the amount of marks with ’no_show’ value, the amount with ’incomplete’
value and the amount equal to the sum of these two amounts.Input
• course: Course entry
• no_show_constant float
• incomplete_constant float
• no_show_plus_incomplete_constant float

Precondition
• All marks used in the score structure, are in the database for each stu-
dent of the course.

• The final grade of all students has already been calculated
Postcondition
• For each student the final grade is set to "fail" if one of these three
amounts is lower than a specified constant

3.1.17 Import
3.1.17.1 Canvas API
3.1.17.1.1 Attributes

SR - 104 Must have
course_id: int
The Canvas course ID for which this instance will be used

82

Great Graders Software Requirements Document

3.1.17.1.2 Operations

SR - 105 Must have
get_course_users(): array
Returns the users of the course that the Canvas API provides, parses the JSON
data, and returns the data as a arrayPrecondition
• A connection with Canvas is instantiated

Postcondition
• An array containing hashes with user information of Canvas (id, name,
created_at, sortable_name, short_name) is returned

SR - 106 Must have
get_course_assignments(): array
Returns all the assignments of the course that the Canvas API provides, parses the
JSON data, and returns the array containing a hash for each assignmentPrecondition
• A connection with Canvas is instantiated

Postcondition
• An array containing for each assignment a hash with the provided as-
signment information of Canvas is returned

SR - 107 Must have
get_submissions(): array
Returns all the submissions of a specific assignment that the Canvas API provides,
parses the JSON data, and returns in an array a hash for each submissionInput
• assignment_id: int

Precondition
• A connection with Canvas is instantiated

Postcondition
• An array containing for each assignment a hash with the provided as-
signment information of Canvas is returned

3.1.17.2 Assessment importer
3.1.17.2.1 Attributes

SR - 108 Must have
canvas_api: CanvasApi
Object that canmake API requests to Canvas

3.1.17.2.2 Operations

83

Great Graders Software Requirements Document

SR - 109 Must have
import(): void
Imports all Canvas assignments of the course into the assessments table of the
Grade Calculation databasePrecondition
Postcondition
• Canvas assignments that are not assessments in the database are
added

• Canvas assignments that are already assessments in the database are
updatedwith the imported information

• Canvas assessments that are no longer a Canvas assignment are re-
moved from the database

3.1.17.3 CSVmarks importer
3.1.17.3.1 Operations

SR - 110 Should have
import(): void
The teacher imports a CSV file with marks for an assessment it in the database
Input
• csv: CSV object
• assessment: assessment database entry

Precondition
• The file uploaded is of CSV format
• The CSV has 2 columns
• The first header name of CSV is called ’StudentID’
• The second header name of csv is equal to the value of assess-
ment.name

• All students in csv are also in the database
Postcondition
• Assessment marks for students that do not have a mark for

assessment in the database but have a mark in csv, are added to the
database.

• Assessment marks of students that already have a mark for
assessment and are in csv, are updatedwith themark in csv.

SR - 111 Should have
import_multiple(): void
The teacher imports a CSV with marks for multiple assessments in the database

84

Great Graders Software Requirements Document

SR - 111 Should have
Input
• csv : CSV object
• assessments : array of assessment database entries

Precondition
• The file uploaded is of CSV format
• csv has n + 1 columns, where n is the number of assessments in

assessments.
• The first header is called ‘StudentID’ and the rest are the names of
the assessments.

• assessments[i].name equals the name of the i+ 1th header
• All students in the CSV are also in the database

Postcondition
• For each assessment in assessments: Assesment marks for students
that do not have a mark for assessment in the database but have a
mark in csv, are added to the database.

• For each assessment in assessments: Assessment marks of students
that already have a mark for the assessment and are in csv, are up-
dated with themark in the csv.

3.1.17.4 Mark importer

SR - 112 Must have
canvas_api: CanvasApi
Object that canmake API requests to Canvas

SR - 113 Must have
import(): void
Imports assignment marks of the Canvas course into the database
Precondition
• For each mark that is added, the corresponding Canvas assignment is
already added as assessment into the database

Postcondition
• The Canvas assignment marks are inserted/updated/removed from
the database.

• For all students of the course, each assignment mark that is not in the
database, is added to the database

• For all students of the course, each assignment mark that is already in
the database, is updatedwith the possibly changedmark

• For all students of the course, each assignment mark in the database
that is not amark anymore, is removed from the database

3.1.17.5 Student importer

SR - 114 Must have
canvas_api: CanvasApi

85

Great Graders Software Requirements Document

SR - 114 Must have
Object that canmake API requests to Canvas

SR - 115 Must have
import(): void
Imports students of the launched Canvas course, into the database
Postcondition
• All students of the Canvas course that are not in the database, are
added to the database.

• All students of the Canvas course that are already in the database, are
updatedwith the new student information.

• All students in the database that are not in Canvas anymore, are re-
moved from the database.

3.1.18 Export
3.1.18.1 CSV exporter
3.1.18.1.1 Operations

SR - 116 Should have
export(): csv object
A teacher exports a CSV containing all students with the corresponding marks
and scores for each assessment, as well as the partial and final gradesPrecondition
• The teacher selects category of grades for CSV export
• The teacher clicks ’Export’ button

Postcondition
• A CSV containing all students and their corresponding marks for
each assessment is returned.

• The CSV has 4 columnswith student ID, SIS ID, a grade name and the
corresponding grade.

• The teacher chooses the directory where the resulting CSV file
should be saved.

3.1.19 Controllers
3.1.19.1 Assessment Controller
3.1.19.1.1 Operations

SR - 117 Must have
import(): void
Imports assignment information of the course, from Canvas, into the database
Input POST request
Precondition

86

Great Graders Software Requirements Document

SR - 117 Must have
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A request to the ASSESSMENT IMPORTER is made

SR - 118 Must have
index(): void
For each assessment of the course the information is rendered as JSON
Input GET request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher
• The assignments of the course are imported

Postcondition
• AJSONresponse containing the information for eachassessment is re-
turned.

SR - 119 Must have
show(): void
For a requested assessment of the course the information is rendered as JSON
Input GET request containing assessment id of the requested assessment
Precondition
• The requested assignment of the course is imported in the database
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A JSON response containing the information of the requested assess-
ment is returned.

SR - 120 Should have
create(): void
Creates an assessment from a CSV and adds it to the database
Input
• POST request containing assessment information is made
• CSV file
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Precondition

87

Great Graders Software Requirements Document

SR - 120 Should have
• The CSV file is properly formatted (see 110)
• The POST request contains all assessment information parameters
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• The assessment with the provided assessment information is made

SR - 121 Must have
update(): void
Updates information of an assessment
Input
• POST request containing assessment information that the user wishes
to change

Precondition
• The POST request contains all assessment information parameters of
which the user wishes to change

• The POST request can only contain the parameters: name, mark_type,
max_score, published, muted, normalized, normalized_base, nor-
malized_multiplier, minimum_requirement, attempt_number and at-
tempt_assessment_id

• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• The assessment with the provided assessment information is updated

3.1.19.2 Audit Log Controller
3.1.19.2.1 Operations

SR - 122 Could have
index(): void
Each audit log related to the course is rendered as JSON
Input GET request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A JSON response containing the audit logs of the course is returned.

3.1.19.3 Course controller
3.1.19.3.1 Operations

88

Great Graders Software Requirements Document

SR - 123 Must have

SR - 123 Must have
show(): void
For the currently launched course, the information is rendered as JSON
Input GET request containing the current session
Precondition
• The course of the current session is in the database
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A JSON response containing information for the currently launched
course is returned.

SR - 124 Must have
update(): void
Updates grading_scheme, score_description, score_structure and
draft_score_structure of the course
Input
• POST request containing course information that the user wishes to
change

Precondition
• The course that the user wishes to update is in the database
• The POST request contains all course information parameters which
the user wishes to change

• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• The course is updatedwith the passed course information parameters
• If changes to either the grading_scheme or final_score_structure are
made stored

• Updates are saved in the audit logs

3.1.19.4 Grade Controller
3.1.19.4.1 Operations

SR - 125 Must have
calculate(): void
Computes the grades using the information stored in the database
Input POST request
Precondition

89

Great Graders Software Requirements Document

SR - 125 Must have
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher
• All the information needed to compute the grades is present in the
database. (Marks, assessments, course, students, grade definitions

Postcondition
• All the grades stored in the database

SR - 126 Could have
notifies(): void
Notifies the front-end if marks have been changed after calculating grades has
happened. Gets called automatically if marks are changed.Input GET request
Postcondition
• Front-end is notified if grades have been calculated before the marks
where changed.

3.1.19.5 Grade Definition Controller
3.1.19.5.1 Operations

SR - 127 Must have
index(): void
For each grade definition of the course, get the information and renders it as JSON
Input GET request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher
• The grade definitions of the course are imported

Postcondition
• A JSON response containing information of each grade definition is re-
turned

SR - 128 Must have
show(): void
For a requested grade definition the information is rendered as JSON
Input GET request containing the ID of the grade definition
Precondition
• The requested grade definition is in the database
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A JSON response containing information for the requested grade def-
inition is returned.

90

Great Graders Software Requirements Document

SR - 129 Must have
update(): void
Updates muted and published attributes of a grading definition
Input
• POST request containing the ID of the grade definition and the grade
definition information that the user wishes to change

Precondition
• The grade definition that the user wishes to update is in the database
• The POST request contains all grade definition parameters which the
user wishes to change

• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• The grade definition is updated with the passed grade definition pa-
rameters

3.1.19.6 Grading Scheme Controller
3.1.19.6.1 Operations

SR - 130 Must have
index(): void
For each available grading scheme in Grade Calculation, get the information and
renders it as JSONInput GET request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A JSON response containing information of each grading scheme is re-
turned

SR - 131 Should have
show(): void
For a requested grading scheme the information is rendered as JSON
Input GET request containing the ID of the grading scheme
Precondition
• The requested grading scheme is in the database or is a hardcoded
grading scheme

• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A JSON response containing information for the requested grading
scheme is returned.

91

Great Graders Software Requirements Document

3.1.19.7 Marks Controller
3.1.19.7.1 Operations

SR - 132 Must have
import(): void
Imports mark information of the course, from Canvas, into the database
Input POST request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A request to theMARK IMPORTER is made

3.1.20 RESTAPI Controller
3.1.20.1 Operations

SR - 133 Should have
import(): void
Imports the provided content of an assignment, into the database
Input POST request
Precondition
• The user that makes the request is authenticated
• The POST request contains at least the following parameters:

– Name
– Assessment type
– Mark Type
– Course ID

Postcondition
• The assignment is stored as an assessment in the Grade Calculation
database.

SR - 134 Could have
index(): void
A JSON containing the the SIS IDs and the corresponding marks, final grades and
partial grades for each student within the Course.Input GET request
Precondition
• The GET request contains a Course ID.
• The user that makes the request is authenticated.

Postcondition
• A JSON containing for each student in the course (with provided
Course ID) the student ID their corresponding marks, partial grades
and final grade.

92

Great Graders Software Requirements Document

3.1.20.2 Student ViewController
3.1.20.2.1 Operations

SR - 135 Must have
index(): void
All information needed for the student interface is retrieved and returned as JSON
Input GET request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Student
• All the information needed for the student interface has been im-
ported into the database

Postcondition
• A JSON response containing all information needed for the student
view of the student that made the request, is returned

3.1.20.3 Student Controller
3.1.20.3.1 Operations

SR - 136 Must have
import(): void
Imports student information of the course, from Canvas, into the database
Input POST request
Precondition
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• A request to the STUDENT IMPORTER is made

3.1.20.4 Front-end Controller
3.1.20.4.1 Operations

SR - 137 Must have
main_app(): void
Checks the role of the current user and shows the front-end view accordingly
Input GET request
Precondition
• The user is logged into Canvas
• The user is authorized to access Grade Calculation

Postcondition
• Shows the appropriate front-end view, either the Teacher or Student
view.

93

Great Graders Software Requirements Document

3.1.20.5 Proxy Controller
3.1.20.5.1 Operations

SR - 138 Must have
add_grades(): void
Gets a Canvas response and adds the grades to each student listed in the response.
It then returns the response added with the grades as JSONInput GET request
Precondition
• The user is authorized to access Grade Calculation
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• returns the grades of all students in the course as JSON

SR - 139 Must have
add_marks(): void
Gets a Canvas response and adds themarks to each student listed in the response.
It then returns the response added with the marks as JSONInput GET request
Precondition
• The user is authorized to access Grade Calculation
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• returns themarks of all students in the course as JSON

3.1.20.6 CSV import controller

SR - 140 Must have
import(): void
Takes a CSV and passes this on to the function which processes the CSV file
Input POST request
Precondition
• The user is authorized to access Grade Calculation
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• Themarks read from the CSV are shown
• A confirmation button of the readmarks is shown
• Upon confirmation:

– The function which processes the CSV is called

3.1.20.7 CSV export controller

94

Great Graders Software Requirements Document

SR - 141 Must have
export(): void
takes the request for export and passes this on to the function which exports the
CSV fileInput GET request
Precondition
• The user is authorized to access Grade Calculation
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Teacher

Postcondition
• Function which exports the grades of the database to CSV is called

3.1.21 Score Structure Validator
3.1.21.1 Operations

SR - 142 Must have
validate_each(): void
Checks if the score structure provided is valid
Input The new score structure to be saved
Precondition
• Score structure to be validated is not nil

Postcondition
• An error is returned if the score structure is invalid

3.1.22 Authorization
3.1.22.1 Operations

SR - 143 Must have
authorize(): void
Checks the role of a user
Precondition
• User has a canvas account

Postcondition
• If the Canvas role is Administrator or Instructor and the permission
listed in [1] section2.4.1hold then theuser is authorized to theTeacher
view

• If Canvas role is Learner then the user is authorized to the Student
view

• Otherwise an error page is shown.

3.1.23 Routes

95

Great Graders Software Requirements Document

3.1.23.1 Attributes

SR - 144 Must have
import students route: route
<host>/api/v1/students/import
The path that needs to be called to import the students from Canvas to Grade
Calculation

SR - 145 Must have
import assessments route: route
<host>/api/v1/assessments/import
The path that needs to be called to import the assessments from Canvas toGrade
Calculation

SR - 146 Must have
import marks route: route
<host>/api/v1/marks/import
The path that needs to be called to import themarks fromCanvas to Grade Calcu-
lation

SR - 147 Must have
grade definition route: route
<host>/api/v1/grade-definitions
<host>/api/v1/grade-definitions/"id"
The path that needs to be called to show the information about the grade-
definitions or to show a single grade-definitions

SR - 148 Must have
course route: route
<host>/api/v1/course
The path that needs to be called to show the information about the course

SR - 149 Must have
student-view route: route
<host>/api/v1/student
The path that needs to be called to show the information required for the student-
view

SR - 150 Must have
grading schemes route: route
<host>/api/v1/grading-schemes
<host>/api/v1/grading-schemes/"id"

96

Great Graders Software Requirements Document

SR - 150 Must have
The path that needs to be called to show the information about the grading
schemes or to show a single grading scheme

3.1.24 Audit logs
3.1.24.1 Attributes

SR - 151 Should have
Action: enum
Represents the type of modification that a user of Grade Calculation can
do: { change, add, remove, recalculate }

3.1.24.2 Operations

SR - 152 Should have
createUserAuditLog(): void
This function is calledwhena singlemodification to one ormore database entries
of the Grade Calculation database is done, in order to store which user did what
kind of modification. Both the old and new entries are stored in the Audit log
databaseInput
• action: Action
• entries_to_be_changed: Array database entry

Precondition
• entries_to_be_changed contains at least one database entry
• A user initiates a request tomake changes in the database

Postcondition
• entries_to_be_changed is copied to a new array called
changed_entries

• The modification in the Grade Calculation database is done to
changed_entries

• entries_to_be_changed is overwritten by changed_entries
• A user audit log containing: “action, User that initiates action, en-
try_to_be_changed,changed_entry, Current Time" is stored as
immutable entry in the “User Log" table of the Audit Log database.

SR - 153 Should have
restoreUserAuditLog(): void
This function is called to restore the state of one user audit log
Input
• audit_log: entry of User Log Table

Precondition

97

Great Graders Software Requirements Document

SR - 153 Should have
• The user that initiates the request is logged in into Canvas
• The user that initiates the request is a Administrator

Postcondition
• The modified entries are reverted to the entries before modification
in the Grade Calculation database.

3.1.25 Notification
3.1.25.1 Operations

SR - 154 Should have
notifyStudent(): void
This function is called to notify a student of changes
Input
• student: string
• change: string

Precondition
• The change relevant for the student has beenmade in theGradeCal-
culation database

Postcondition
• The student gets notified that a change has been made to the final
score structure, the grading description, or a grade.

SR - 155 Should have
notifyUnmuted(): void
Sends a notification to the student stating that their final grade has been
unmuted.Input
• student: string

Precondition
• The final grade of student has been unmuted

Postcondition
• The student gets a notification stating their final grade has been un-
muted.

98

Great Graders 4.1

Chapter 4
Requirements TraceabilityMatrix
4.1 URD to SRD
URF SRF Priority
URF1.1 SR-137, SR-147, SR-148, SR-150 Must have
URF1.2 SR-24, SR-50 SR-66, SR-67, SR-68, SR-69, SR-139 Must have
URF1.3 SR-24, SR-50, SR-73, SR-74, SR-75, SR-138, SR-147 Must have
URF1.4 SR-24, SR-50 SR-73, SR-74, SR-75, SR-138, SR-147 Must have
URF1.5 SR-5, SR-6, SR-8, SR-19, SR-20, SR-53, SR-130, SR-150 Must have
URF1.6 SR-5, SR-6, SR-8, SR-19, SR-20, SR-53, SR-130, SR-150 Must have
URF1.7 Won’t be implemented Won’t have
URF1.8 Won’t be implemented Won’t have
URF1.9 SR-5, SR-6, SR-23, SR-53, SR-131, SR-123, SR-150 Should have
URF1.10 SR-6, SR-9, SR-10, SR-11, SR-12, SR-14, SR-15, SR-16, SR-17,

SR-18, SR-19, SR-20, SR-21, SR-34, SR-54, SR-142
Must have

URF1.11 SR-6, SR-9, SR-10, SR-11, SR-12, SR-14, SR-15, SR-16, SR-17,
SR-18, SR-19, SR-20, SR-21, SR-34, SR-54, SR-124, SR-142

Should have
URF1.12 SR-6, SR-10, SR-11, SR-12, SR-14, SR-15, SR-16, SR-17,

SR-18, SR-34, SR-54, SR-123
Should have

URF1.13 SR-102, SR-125 Must have
URF1.14 SR-22, SR-126 Could have
URF1.15 SR-3, SR-26, SR-28, SR-74, SR-75, SR-76, SR-121, SR-129 Should have
URF1.16 SR-3, SR-25, SR-27, SR-74, SR-75, SR-76, SR-121, SR-129 Should have
URF1.17 SR-3, SR-26, SR-28, SR-74, SR-75, SR-76, SR-121, SR-129 Could have
URF1.18 SR-3, SR-25, SR-27, SR-74, SR-75, SR-76, SR-121, SR-129 Could have
URF1.19 SR-10, SR-14, SR-56, SR-57, SR-117, SR-118, SR-119 Must have
URF1.20 SR-9, SR-19, SR-20, SR-55 Should have
URF1.21 SR-32, SR-102, SR-125 Could have

99

Great Graders Software Requirements Document

URF SRF Priority
URF1.22 SR-21, SR-142 Could have
URF1.23 SR-31 Could have
URF1.24 SR-31 Could have
URF1.25 SR-31 Could have
URF1.26 SR-31, SR-63, SR-114 Should have
URF1.27 SR-31, SR-64, SR-114, SR-136 Should have
URF1.28 SR-31, SR-63, SR-114, SR-136 Should have
URF1.29 SR-31, SR-64, SR-114, SR-136 Should have
URF1.30 SR-31, SR-63, SR-114, SR-136 Should have
URF1.31 SR-31, SR-64, SR-114, SR-136 Should have
URF1.32 SR-18, SR-92 Could have
URF1.33 SR-18, SR-92 Could have
URF1.34 SR-143 Must have
URF1.35 Won’t be implemented Won’t have
URF1.36 SR-1, SR-2, SR-3, SR-4, SR-65, SR-135, SR-136, SR-137,

SR-149
Must have

URF1.37 SR-1, SR-2, SR-68 SR-69, SR-135, SR-137, SR-149 Must have
URF1.38 SR-1, SR-3, SR-73, SR-75, SR-127, SR-128, SR-135, SR-137,

SR-149
Should have

URF1.39 SR-1, SR-3, SR-73, SR-75, SR-127, SR-128, SR-135, SR-137,
SR-149

Must have
URF1.40 SR-1, SR-53, SR-135, SR-105, SR-131, SR-137, SR-144,

SR-149
Should have

URF1.41 SR-1, SR-55, SR-105, SR-123, SR-137, SR-135, SR-144,
SR-149

Should have
URF1.42 SR-1,SR-3, SR-77, SR-154 Should have
URF1.43 SR-1,SR-3, SR-155, Should have
URF1.44 Won’t be implemented Won’t have
URF1.45 SR-36, SR-49, SR-137, SR-143 Could have
URF1.46 SR-68, SR-69, SR-73, SR-75, SR-138, SR-139, SR-143 Could have
URF1.47 SR-36, SR-47, SR-52, SR-54, SR-123, SR-143, Could have
URF1.48 SR-36, SR-38, SR-39, SR-40, SR-41, SR-44, SR-45, SR-46,

SR-47, SR-52, SR-54, SR-124, SR-142
Could have

URF1.49 SR-36, SR-38, SR-39, SR-40, SR-41, SR-44, SR-45, SR-46,
SR-47, SR-52, SR-54, SR-124, SR-142,

Could have
URF1.50 SR-35, SR-36, SR-53, SR-123 Could have
URF1.51 SR-35, SR-36, SR-37, SR-38, SR-39, SR-53, SR-124 Could have
URF1.52 SR-35, SR-36, SR-37, SR-38, SR-39, SR-53, SR-124 Could have
URF1.53 Won’t be implemented Won’t have
URF1.54 Won’t be implemented Won’t have

100

Great Graders Software Requirements Document

URF SRF Priority
URF2.1 SR-58 Must have
URF2.2 SR-59 Should have
URF2.3 SR-58, SR-70 Must have
URF2.4 SR-58, SR-70 Must have
URF2.5 SR-69 Must have
URF2.6 SR-69 Must have
URF2.7 SR-69 Must have
URF2.8 SR-69 Must have
URF2.9 SR-2, SR-66, SR-69, SR-119, SR-121 Should have
URF2.10 SR-30, SR-60, SR-61, SR-62, SR-66, SR-69, SR-72, SR-121 Should have
URF2.11 SR-79, SR-80 Must have
URF2.12 SR-79, SR-80 Must have
URF2.13 SR-8, SR-37, SR-75, SR-93, SR-150 Must have
URF2.14 SR-10, SR-14, SR-40, SR-44, SR-71,SR-84 Must have
URF2.15 SR-14, SR-44,SR-84 Must have
URF2.16 SR-10, SR-14, SR-40, SR-44, SR-71, SR-85 Must have
URF2.17 SR-14, SR-44, SR-85 Must have
URF2.18 SR-10, SR-14, SR-40, SR-44, SR-71, SR-88 Should have
URF2.19 SR-14, SR-44, SR-88 Should have
URF2.20 SR-10, SR-14, SR-40, SR-44, SR-71, SR-90 Should have
URF2.21 SR-14, SR-44,SR-90 Should have
URF2.22 SR-10, SR-14, SR-40, SR-44, SR-71, SR-91 Should have
URF2.23 SR-14, SR-44, SR-91 Should have
URF2.24 SR-14, SR-10, SR-40, SR-44, SR-71,SR-86 Should have
URF2.25 SR-14, SR-44, SR-86 Should have
URF2.26 SR-10, SR-14, SR-40, SR-44, SR-71, SR-87 Should have
URF2.27 SR-14, SR-44, SR-87 Should have
URF2.28 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81,

SR-82, SR-83, SR-91
Could have

URF2.29 SR-13, SR-14, SR-43, SR-44, SR-81, SR-82, SR-83, SR-91 Could have
URF2.30 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81,

SR-82, SR-83, SR-90
Could have

URF2.31 SR-13, SR-14, SR-43, SR-44, SR-81, SR-82, SR-83, SR-90 Could have
URF2.32 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81,

SR-82, SR-83, SR-89
Could have

URF2.33 SR-13, SR-14, SR-43, SR-44, SR-81, SR-82, SR-83, SR-89 Could have
URF2.34 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81,

SR-82, SR-83, SR-88
Could have

101

Great Graders Software Requirements Document

URF SRF Priority
URF2.35 SR-14, SR-13, SR-43, SR-44, SR-81,SR-82,SR-83, SR-88 Could have
URF2.36 SR-10, SR-14, SR-40, SR-44, SR-85 Should have
URF2.37 SR-10, SR-14, SR-40, SR-44, SR-85 Could have
URF2.38 SR-18, SR-48, SR-92 Could have
URF2.39 SR-10, SR-14, SR-18, SR-40, SR-44, SR-48, SR-71, SR-92 Could have
URF2.40 Won’t be implemented Won’t have
URF2.41 Won’t be implemented Won’t have
URF2.42 Won’t be implemented Won’t have
URF2.43 Won’t be implemented Won’t have
URF2.44 SR-79, SR-80 Must have
URF2.45 SR-79, SR-80 Must have
URF2.46 SR-8, SR-37, SR-75, SR-93, SR-150 Must have
URF2.47 SR-14, SR-44, SR-84 Must have
URF2.48 SR-14, SR-44, SR-85 Must have
URF2.49 SR-14, SR-44, SR-88 Should have
URF2.50 SR-14, SR-44, SR-90 Should have
URF2.51 SR-14, SR-44, SR-91 Should have
URF2.52 SR-14, SR-44, SR-86 Should have
URF2.53 SR-14, SR-44, SR-87 Should have
URF2.54 SR-13, SR-14, SR-44, SR-43, SR-83, SR-91 Could have
URF2.55 SR-13, SR-14, SR-44, SR-43, SR-83, SR-90 Could have
URF2.56 SR-13, SR-43, SR-83, SR-89 Could have
URF2.57 SR-13, SR-43, SR-83, SR-88 Could have
URF2.58 SR-10, SR-14, SR-40, SR-44, SR-85 Should have
URF2.59 SR-10, SR-14, SR-40, SR-44, SR-85 Could have
URF2.60 SR-18, SR-48, SR-92 Could have
URF2.61 SR-18, SR-48, SR-92 Could have
URF2.62 Won’t be implemented Won’t have
URF2.63 Won’t be implemented Won’t have
URF2.64 Won’t be implemented Won’t have
URF2.65 Won’t be implemented Won’t have
URF2.66 SR-73, SR-74, SR-75 Must have
URF2.67 SR-102,SR-148 Should have
URF2.68 SR-102,SR-148 Should have
URF2.69 SR-102, SR-139 Should have
URF2.70 SR-75 Must have

102

Great Graders Software Requirements Document

URF SRF Priority
URF2.71 SR-75 Must have
URF2.72 SR-8, SR-37, SR-75, SR-93, SR-94 Could have
URF2.73 SR-8, SR-37, SR-75, SR-93, SR-95 Could have
URF2.74 SR-8, SR-37, SR-75, SR-93, SR-96 Must have
URF2.75 SR-8, SR-37,SR-75, SR-93, SR-101 Must have
URF2.76 SR-8, SR-37, SR-75, SR-93, SR-97 Could have
URF2.77 SR-8, SR-37, SR-75, SR-93, SR-98 Could have
URF2.78 SR-8, SR-37, SR-75, SR-93, SR-99 Could have
URF2.79 SR-8, SR-37, SR-75, SR-93, SR-100 Could have
URF2.80 Won’t be implemented Won’t have
URF2.81 SR-73, SR-74 Must have
URF2.82 SR-93, SR-102, SR-148 Should have
URF2.83 SR-93, SR-102, SR-148 Should have
URF2.84 SR-74, SR-102, SR-138 Should have
URF2.85 SR-75 Must have
URF2.86 SR-75 Must have
URF2.87 SR-8, SR-37, SR-75, SR-93, SR-94 Must have
URF2.88 SR-8, SR-37, SR-75, SR-93, SR-95 Must have
URF2.89 SR-8, SR-37, SR-75, SR-93, SR-97 Could have
URF2.90 SR-8, SR-37, SR-75, SR-93, SR-98 Could have
URF2.91 SR-8, SR-37, SR-75, SR-93, SR-99 Could have
URF2.92 SR-8, SR-37, SR-75, SR-93, SR-100 Could have
URF2.93 Won’t be implemented Won’t have
URF2.94 SR-16, SR-17, SR-47, SR-71, SR-90 Must have
URF2.95 SR-16, SR-17, SR-47, SR-71, SR-90 Should have
URF2.96 SR-17, SR-47, SR-71, SR-90 Should have
URF2.97 SR-16, SR-17, SR-47, SR-71, SR-84 Should have
URF2.98 SR-14, SR-17, SR-47, SR-69, SR-71, SR-90 Must have
URF2.99 SR-12, SR-42, SR-59, SR-124 Should have
URF2.100 SR-78, SR-102, SR-138 Should have
URF2.101 SR-10, SR-12, SR-40, SR-42, SR-59, SR-102 Should have
URF2.102 SR-14, SR-16, SR-44, SR-46, SR-59, SR-102 Should have
URF2.103 SR-10, SR-12, SR-40, SR-42, SR-59, SR-102 Could have
URF2.104 SR-10, SR-40, SR-42, SR-59, SR-102 Could have
URF2.105 SR-102, SR-103 Could have
URF2.106 SR-102, SR-103 Could have

103

Great Graders Software Requirements Document

URF SRF Priority
URF2.107 SR-102, SR-103 Could have
URF3.1 SR-104, SR-108, SR-109, SR-112, SR-106, SR-107, SR-113,

SR-117, SR-132, SR-145, SR-146
Must have

URF3.2 SR-104, SR-106, SR-107, SR-108, SR-109, SR-113, SR-117,
SR-132, SR-145, SR-146

Must have
URF3.3 SR-109 Should have
URF3.4 SR-109 Should have
URF3.5 SR-109 Should have
URF3.6 SR-109 Should have
URF3.7 SR-104 , SR-106, SR-107, SR-108, SR-109, SR-113, SR-117,

SR-132, SR-145, SR-146
Could have

URF3.8 SR-110, SR-111, SR-120, SR-140 Should have
URF3.9 SR-110, SR-111 Should have
URF3.10 SR-110, SR-111 Should have
URF3.11 SR-111 Could have
URF3.12 SR-133 Should have
URF3.13 SR-140 Could have
URF3.14 SR-140 Could have
URF3.15 SR-64, SR-73, SR-75, SR-116, SR-141, SR-143, Should have
URF3.16 SR-64, SR-73, SR-75, SR-116, SR-141, SR-143, Should have
URF3.17 SR-64, SR-68, SR-69, SR-116, SR-143, SR-141 Should have
URF3.18 SR-64, SR-73, SR-75, SR-116, SR-143, SR-141 Could have
URF3.19 SR-64, SR-73, SR-75,SR-116, SR-141, SR-143, Could have
URF3.20 SR-64, SR-68, SR-69, SR-116, SR-141, SR-143 Could have
URF3.21 SR-134 Could have
URF3.22 SR-134 Could have
URF3.23 SR-134 Could have
URF3.24 SR-116 Should have
URF3.25 SR-110, SR-111 Should have
URF3.26 Won’t be implemented Won’t have
URF3.27 Won’t be implemented Won’t have
URF4.1 SR-151, SR-152 Should have
URF4.2 SR-124, SR-151, SR-152, Should have
URF4.3 SR-124, SR-151, SR-152, Should have
URF4.4 SR-152 Should have
URF4.5 SR-152 Should have
URF4.6 SR-152 Should have
URF4.7 SR-152 Should have

104

Great Graders Software Requirements Document

URF SRF Priority
URF4.8 Won’t be implemented Won’t have
URF4.9 SR-153 Won’t have
URF4.10 SR-152 Should have
URF4.11 SR-152 Should have
URF4.12 SR-122, SR-33 Should have
URF4.13 SR-51, SR-122 Could have
URF4.14 Won’t be implemented Won’t have
URF4.15 Won’t be implemented Won’t have
URF4.16 Won’t be implemented Won’t have
URF5.1 SR-110, SR-111, SR-132 Should have
URF5.2 Won’t be implemented Won’t have
URF5.3 Won’t be implemented Won’t have
URF5.4 Won’t be implemented Won’t have
URF5.5 Won’t be implemented Won’t have
URF5.6 Won’t be implemented Won’t have
URF5.7 Won’t be implemented Won’t have
URF5.8 Won’t be implemented Won’t have
URF5.9 Won’t be implemented Won’t have
URF5.10 Won’t be implemented Won’t have
URF5.11 Won’t be implemented Won’t have
URF5.12 SR-7, SR-124, SR-142 Could have
URF5.13 Won’t be implemented Won’t have
URF6.1 This URF has been moved to URC3.15 Must have
URF6.2 This URF has been moved to URC3.16 Must have
URF6.3 SR-7, SR-124 Could have
URF6.4 Won’t be implemented Won’t have
URF6.5 Won’t be implemented Won’t have
URF6.6 Won’t be implemented Won’t have
URF6.7 Won’t be implemented Won’t have
URF6.8 Won’t be implemented Won’t have
URF6.9 Won’t be implemented Won’t have

105

Great Graders Software Requirements Document

4.2 SRD to URD
SRF URF Priority
SR-1 URF1.36, URF1.37, URF1.38, URF1.39, URF1.40, URF1.41,

URf1.42, URF1.43
Must have

SR-2 URF1.36, URF1.37, URF2.9 Must have
SR-3 URF1.15, URF1.16, URF1.17, URF1.18, URF1.36, URF1.38,

URF1.39, URF1.42, URF1.43
Must have

SR-4 URF1.36 Must have
SR-5 URF1.5, URF1.6, URF1.9 Must have
SR-6 URF1.5, URF1.6, URF1.9, URF1.10, URF1.11, URF1.12 Must have
SR-7 URF5.12, URF6.3 Could have
SR-8 URF1.5, URF1.6, URF2.13, URF2.46, URF2.72, URF2.73,

URF2.74, URF2.75, URF2.76, URF2.77, URf2.78, URf2.79,
URF2.87, URF2.88, URF2.89, URF2.90, URF2.91, URF2.92

Must have

SR-9 URF1.10, URF1.11, URF1.20 Should have
SR-10 URF1.10, URF1.11, URF1.12, URF1.19, URF2.14, URF2.16,

URF2.18, URF2.20, URF2.22, URF2.24, URF2.26, URF2.28,
URF2.30, URF2.32, URF2.34, URF2.36, URF2.37, URF2.39,
URF2.58, URF2.59, URF2.101, URF2.103, URF2.104

Must have

SR-11 URF1.10, URF1.11, URF1.12 Should have
SR-12 URF1.10, URF1.11, URF1.12, URF2.99, URF2.101, URF2.103,

URF2.104
Should have

SR-13 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,
URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57

Could have
SR-14 URF1.10, URF1.11, URF1.12, URF1.19, URF2.14, URF2.15,

URF2.16, URF2.17, URF2.18, URF2.19, URF2.20, URF2.21,
URF2.22, URF2.23, URF2.24, URF2.25, URF2.26, URF2.27,
URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,
URF2.34, URF2.35, URF2.36, URF2.37, URF2.39, URF2.47,
URF2.48, URF2.49, URF2.50, URF2.51, URF2.52, URF2.53,
URF2.54, URF2.55, URF2.58, URF2.59, URF2.98, URF2.102

Must have

SR-15 URF1.10, URF1.11, URF1.12 Should have
SR-16 URF1.10, URF1.11, URF1.12, URF2.94, URF2.95, URF2.97,

URF2.102
Should have

SR-17 URF1.10, URF1.11, URF1.12, URF2.94, URF2.95, URF2.96,
URF2.97, URF2.98

Must have
SR-18 URF1.10, URF1.11, URF1.12, URF1.32, URF1.33, URF2.38,

URF2.39, URF2.60, URF2.61
Could have

SR-19 URF1.5, URF1.6, URF1.10, URF1.11, URF1.20 Must have
SR-20 URF1.5, URF1.6, URF1.10, URF1.11, URF1.20 Must have
SR-21 URF1.10, URF1.11, URF1.22 Could have
SR-22 URF1.14 Could have
SR-23 URF1.9 Must have

106

Great Graders Software Requirements Document

SRF URF Priority
SR-24 URF1.2, URF1.3, URF1.4 Must have
SR-25 URF1.16, URF1.18 Should have
SR-26 URF1.15, URF1.17 Should have
SR-27 URF1.16, URF1.18 Should have
SR-28 URF1.15, URF1.17 Should have
SR-29 URF1.23, URF1.24, URF1.25 Could have
SR-30 URF2.10 Should have
SR-31 URF1.26, URF1.27, URF1.28, URF1.29, URF1.30, URF1.31 Should have
SR-32 URF1.21 Could have
SR-33 URF4.12 Should have
SR-34 URF1.10, URF.1.11, URF1.12
SR-35 URF1.50, URF1.51,URF1.52 Could have
SR-36 URF1.45, URF1.47, URF1.48, URF1.49, URF1.50, URF1.51,

URF1.52
Could have

SR-37 URF1.51, URF1.52, URF2.13, URF2.46, URF2.72, URF2.73,
URF2.74, URF2.75, URF2.76, URF2.77, URF2.78, URF2.79,
URF2.87, URF2.88, URF2.89, URF2.90, URF2.91, URF2.92

Could have

SR-38 URF1.48, URF1.49, URF1.51, URF1.52 Could have
SR-39 URF1.48, URF1.49, URF1.51, URF1.52 Could have
SR-40 URF1.48, URF1.49, URF2.14, URF2.16, URF2.18, URF2.20,

URF2.22, URF2.24, URF2.26, URF2.28, URF2.30, URF2.32,
URF2.34, URF2.36, URF2.37, URF2.39, URF2.58, URF2.59,
URF2.101, URF2.103, URF2.104

Could have

SR-41 URF1.48, URF1.49 Could have
SR-42 URF1.48, URF1.49, URF2.99, URF2.101, URF2.103, URF2.104 Could have
SR-43 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,

URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57
Could have

SR-44 URF1.48, URF1.49, URF2.14, URF2.15, URF2.16, URF2.17,
URF2.18,URF2.19, URF2.20, URF2.21, URF2.22, URF2.23,
URF2.24, URF2.25, URF2.26, URF2.27, URF2.28, URF2.29,
URF2.30, URF2.31, URF2.32, URF2.33, URF2.34, URF2.35,
URF2.36, URF2.37, URF2.39, URF2.47, URF2.48, URF2.49,
URF2.50, URF2.51, URF2.52, URF2.53, URF2.54, URF2.55,
URF2.58, URF2.59, URF2.102

Could have

SR-45 URF1.48, URF1.49 Could have
SR-46 URF1.48, URF1.49, URF2.102 Could have
SR-47 URF1.47, URF1.48, URF1.49, URF2.94, URF2.95, URF2.96,

URF2.97, URF2.98
Could have

SR-48 URF2.38, URF2.39, URF2.60, URF2.61 Could have
SR-49 URF1.45 Could have
SR-50 URF1.2, URF1.3, URF1.4 Could have

107

Great Graders Software Requirements Document

SRF URF Priority
SR-51 URF4.13 Could have
SR-52 URF1.47, URF1.48, URF1.49 Could have
SR-53 URF1.5, URF1.6, URF1.9, URF1.40, URF1.50, URF1.51,

URF1.52
Must have

SR-54 URF1.10, URF1.11, URF1.12, URF1.47, URF1.48, URF1.49 Must have
SR-55 URF1.20, URF1.41 Should have
SR-56 URF1.19 Must have
SR-57 URF1.19 Must have
SR-58 URF2.1, URF2.3, URF2.4 Must have
SR-59 URF2.2, URF2.99, URF2.101, URF2.102, URF2.103, URF2.104 Must have
SR-60 URF2.10 Should have
SR-61 URF2.10 Should have
SR-62 URF2.10 Should have
SR-63 URF1.26, URF1.28, URF1.30 Should have
SR-64 URF1.27, URF1.29, URF1.31, URF3.15, URF3.16, URF3.17,

URF3.18, URF3.19, URF3.20
Should have

SR-65 URF1.36 Must have
SR-66 URF1.2, URF2.9, URF2.10 Must have
SR-67 URF1.2 Must have
SR-69 URF1.2, URF1.37, URF1.46, URF2.5, URF2.6, URF2.7, URF2.8,

URF2.9, URF2.10, URF2.98, URF3.17, URF3.20
Must have

SR-70 URF2.3, URF2.4 Must have
SR-71 URF2.14, URF2.16, URF2.18, URF2.20, URF2.22, URF2.24,

URF2.26, URF2.28, URF2.30, URF2.32;URF 2.34, URF2.39,
URF2.94, URF2.95, URF2.96, URF2.97, URF2.98

Must have

SR-72 URF2.10 Should have
SR-73 URF1.3, URF1.4, URF1.38, URF1.39, URF1.46, URF2.66,

URF2.81, URF3.15, URF3.16, URF3.18, URF3.19
Must have

SR-75 URF1.3, URF1.4, URF1.15, URF1.16, URF1.17, URF1.18,
URF1.38, URF1.39, URF1.46, URF2.13, URF2.46, URF2.66,
URF2.70, URF2.71, URF2.72,URF2.73, URF2.74, URF2.75,
URF2.76, URF2.77, URF2.78, URF2.79, URF2.85, URF2.86,
URF2.87, URF2.88, URF2.89, URF2.90, URF2.91, URF2.92,
URF3.15, URF3.16, URF3.18, URF3.19

Must have

SR-76 URF1.15, URF1.16, URF1.17, URF1.18 Should have
SR-77 URF1.42 Should have
SR-78 URF2.100 Should have
SR-79 URF2.11, URF2.12, URF2.44, URF2.45 Must have
SR-80 URF2.11, URF2.12, URF2.44, URF2.45 Must have
SR-81 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,

URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57
Could have

108

Great Graders Software Requirements Document

SRF URF Priority
SR-82 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,

URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57
Could have

SR-83 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,
URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57

Could have
SR-84 URF2.14, URF2.15 URF2.47, URF2.97 Must have
SR-85 URF2.16, URF2.17, URF2.36, URF2.37, URF2.48, URF2.58,

URF2.59
Must have

SR-86 URF2.24, URF 2.25, URF2.52 Should have
SR-87 URF2.26, URF2.27, URF2.53 Should have
SR-88 URF2.18, URF2.19, URF2.34, URF2.35, URF2.49, URF 2.57 Should have
SR-89 URF2.32, URF3.33, URF2.56 Should have
SR-90 URF2.20, URF2.21, URF2.30, URF2.31, URF2.50, URF2.55,

URF2.94, URF2.95, URF2.96, URF2.98
Should have

SR-91 URF2.22, URF2.23, URF2.28, URF2.29, URF2.51, URF2.54 Should have
SR-92 URF1.32, URF1.33, URF2.38, URF2.39, URF2.60, URF2.61 Could have
SR-93 URF2.13, URF2.46, URF2.72, URF2.73, URF2.74, URF2.75,

URF2.76, URF2.77, URF2.78, URF2.79, URF2.82, URF2.83,
URF2.87, URF2.88, URF2.89, URF2.90, URF2.91, URF2.92

Must have

SR-94 URF2.72, URF2.87 Must have
SR-95 URF2.73, URF2.88 Must have
SR-96 URF2.74 Must have
SR-97 URF2.76, URF2.89 Must have
SR-98 URF2.77, URF2.90 Must have
SR-99 URF2.78, URF2.91 Must have
SR-100 URF2.79, URF2.92 Must have
SR-101 URF2.75 Must have
SR-102 URF1.13, URF1.21, URF2.67, URF2.68, URF2.69, URF2.82,

URF2.83, URF2.84, URF2.100, URF2.101, URF2.102,
URF2.103, URF2.104, URF2.105, URF2.106, URF2.107

Must have

SR-103 URF2.105, URF2.106, URF2.107 Could have
SR-104 URF3.1, URF3.2, URF3.7 Must have
SR-105 URF1.40, URF1.41 Must have
SR-106 URF3.1, URF3.2, URF3.7 Must have
SR-107 URF3.1, URF3.2, URF3.7 Must have
SR-108 URF3.1, URF3.2, URF3.7 Must have
SR-109 URF3.1, URF3.2, URF3.3, URF3.4, URF 3.5, URF3.6, URF3.7 Must have
SR-110 URF3.8, URF3.9, URF3.10, URF3.25, URF5.1 Should have
SR-111 URF3.8, URF3.9, URF3.10, URF3.11, URF3.25, URF5.1 Should have
SR-112 URF3.1 Must have

109

Great Graders Software Requirements Document

SRF URF Priority
SR-113 URF3.1, URF3.2, URF3.7 Must have
SR-114 URF1.26, URF1.27, URF1.28, URF1.29, URF1.30, URF1.31 Must have
SR-115 URF1.26, URF1.27, URF1.28, URF1.29, URF1.30, URF1.31 Must have
SR-116 URF3.15, URF3.16, URF3.17, URF3.24 Should have
SR-117 URF1.19, URF3.1, URF3.2, URF3.7 Must have
SR-118 URF1.19 Must have
SR-119 URF1.19, URF2.9 Must have
SR-120 URF3.8, URF5.2 Should have
SR-121 URF1.15, URF1.16, URF1.17, URF1.18, URF2.9, URF2.10 Must have
SR-122 URF4.12, URF4.13 Could have
SR-123 URF1.9, URF1.12, URF1.41, URF1.47, URF1.50 Must have
SR-124 URF1.11, URF1.48, URF1.49, URF1.50, URF1.52, URF2.99,

URF4.2, URF4.3, URF5.12, URF6.3
Must have

SR-125 URF1.13, URF1.21 Must have
SR-126 URF1.14 Could have
SR-127 URF1.38, URF1.39 Must have
SR-128 URF1.38, URF1.39 Must have
SR-129 URF1.15, URF1.16, URF1.17, URF1.18 Must have
SR-130 URF1.5, URF1.6 Must have
SR-131 URF1.9, URF1.40 Should have
SR-132 URF3.1, URF3.2, URF3.7, URF5.1 Must have
SR-133 URF3.12 Should have
SR-134 URF3.21, URF3.22, URF3.23 Could have
SR-135 URF1.36, URF1.37, URF1.38, URF1.39, URF1.40, URF1.41 Must have
SR-136 URF1.26, URF1.27, URF.128, URF1.29, URF1.30, URF1.31,

URF1.36
Must have

SR-137 URF1.1, URF1.36, URF1.37, URF1.38, URF1.39, URF1.41,
URF1.45

Must have
SR-138 URF1.3, URF1.4, URF1.46, URF2.84, URF2.100 Must have
SR-139 URF1.2, URF1.46, URF2.69 Must have
SR-140 URF3.8, URF3.13, URF3.14 Must have
SR-141 URF3.15, URF3.16, URF3.17, URF3.18, URF3.19, URF3.20 Must have
SR-142 URF1.10, URF1.11, URF1.22, URF1.48, URF1.49 Must have
SR-143 URF1.34, URF1.45, URF1.46, URF1.47, URF3.15, URF3.16,

URF3.17, URF3.18, URF3.19, URF3.20
Must have

SR-144 URF1.40, URF1.41 Must have
SR-145 URF3.1, URF3.2, URF3.7 Must have
SR-146 URF3.1, URF3.2, URF3.7 Must have

110

Great Graders Software Requirements Document

SRF URF Priority
SR-147 URF1.1, URF1.3, URF1.4 Must have
SR-148 URF1.1, URF2.67, URF2.68, URF2.82, URF2.83 Must have
SR-149 URF1.36, URF1.37, URF1.38, URF1.39, URF1.40, URF1.41 Must have
SR-150 URF 1.1, URF1.5, URF1.6, URF1.9, URF2.13, URF2.46, URF4.10,

URF4.11
Must have

SR-151 URF4.1, URF4.2, URF4.3 Should have
SR-152 URF4.1, URF4.2, URF4.3, URF4.4, URF4.5, URF4.6, URF4.7 Should have
SR-153 URF4.9 Should have
SR-154 URF1.42, URF1.43 Should have
SR-155 URF1.43

111

Great Graders A.1

Appendix A
User Interface - Student
Given the fact that Grade Calculation is not a separate application but an LTI plugin embed-
ded into Canvas, the designs are confined to one page with multiple tabs. Furthermore, Can-
vas handles all authentication and login matters. Thus, these aspects are not considered in
the designs. Transitions between the different views can be found in Appendix C.
It is also important to note that in the context of the user interface, “Grading Structure" refers
to both the grading scheme and the final score structure together. This term is not defined in
the definitions due to the fact that it is only used to enhance the user experience. Within the
documentation produced for Grade Calculation by Great Graders, the grading scheme and
the final score structure will always be separate entities.

A.1 Student View
When a student logs into Canvas and enters a course page, then alongwith the provided tabs
of Canvas, the tab called Grade Calculation is also shown for courses for which have Grade
Calculation enabled. Selecting this tab provides the student access to the overview of their
individual grades for the specific course. At the top of the page the name of the student is
shown. Below that, the name of the course along with when the course is being taught, are
displayed.

After that, a highlightedbox is shown. This box contains thedescriptionof the “GradingStruc-
ture" aswell as the used grading scheme. Inmore detail, in the subsection called “Description
of the Grading Structure", the student can find an explanation of how the final grade is calcu-
lated and which components it consists of. Moreover, in the section “Used grading scheme",
the way the final grade is represented is shown.

The main focus of the Student Interface is the table in the center. For every assessment, the
names of the assessments, their weight, the calculation method, the date of change, and fi-
nally the result the student attained for this assessment are shown. More precisely, in this
table the student can find information not only for individual assessments, but also for sets of
assessments that are defined in the final score structure. In addition, since the set of assess-
ments are collapsible menus, they give the option to either show only information for the set
as a whole or, if expanded, to also show information for each of the individual assessments it
contains.

112

Great Graders Software Requirements Document

Figure A.1: Student Interface: Overview page

Finally, in the top right corner of the Student View there is an Export button. Clicking this
button allows the student to obtain a CSVfile containing theirmarks, partial grades, and final
grades as shown in the table.

113

Great Graders B.1

Appendix B
User Interface - Teacher
B.1 “Grading Structure" view

Figure B.1: “Grading Structure" view: Overview Page

114

Great Graders Software Requirements Document

Whena teacherwith thepermissions defined in Section2.4.1 of theURD [1] logs ontoCanvas
and enters a course page, then along with the provided tabs of Canvas, the tab called Grade
Calculation is also shown. Selecting this tab provides the teacher access to the Teacher inter-
face for the specific course. If a teacher does not have the permission defined in the Section
2.4.1 of theURD, an error page is shown. From nowon, it is assumed that the teacher has the
necessary permission.

After obtaining access to the Teacher Interface, the “Grading Structure" tab is shown to the
teacher. At the top of the page, the teacher can select, via a drop-down menu, the grading
scheme of their choosing. For example, in the picture above, the scheme selected is the “1-10
rounding to nearest integer", which is the default grading scheme selected by Grade Calcula-
tion. Twomore items that can also be found at the top of the page are the “Open Information"
and “Save Progress" buttons. By clicking the “Open Information" button a information page
is displayed, appearing from the right-side of the screen. This page contains information to
help the teacher interactwithGradeCalculation. Secondly, by clicking on the “Save progress"
button, the teacher can save their progress when creating the grading structure.

At the center of the screen there is a table that displays the components of the final score
structure and their definitions. The teacher or administrator can see the different sets of as-
sessments as well as the individual assessments that the sets are composed of. This table
contains six columns, namely “Component", “Weight", “Max. score", “Calculation", “Min. re-
quirement", and “Options". The “Component" column holds the name of the assessment or
assessment set. The “Weight" column contains a percentage which denotes the extent to
which the assessment or assessment set contributes to the final score. These weights are
only shown when the calculation method is “Weighted average". In this case, it is imperative
to know the extent to which the children of an assessment set influence the score of the as-
sessment set. For all other calculation methods, the weight is not necessary in order to gain
a full understanding of the composition of the assessment set. For example, if the calculation
method is “Unweighted average" then trivially all children of the assessment set will have an
equal weight which sums up to 100.

In third place, the column “Max. score" holds themaximumscore that one could attain for this
assessment. For example, if the assessment has a grading type of “percentage", then themax-
imum score would be 100. Then, the “Calculation" column is used to display the calculation
method for determining the score for the assessment set. As individual assessments cannot
have a calculation method on their own, this column is always left empty for them. Further-
more, the “Min. requirement" column displays a value, within the calculation range of the
assessment. This value represents the minimum score that the student must attain in order
to pass the course. If nominimumrequirement is necessary for assessment, this column is left
empty. Lastly, the “Options" column contains a button, which when selected, shows a menu.
Both an individual assessment and a set of assessments have this option button, however, the
contents in themenu differ between the two types. For an assessment sets, the menu allows
one to add a new component, to delete the whole set (including its children), and to edit the
information of the assessment set in the other columns. For an individual assessments, the
available options are to edit the the information of the assessment in the other columns, to
delete the assessment, and to create multiple attempts. Please see Appendix B.1.5 for fur-
ther clarification of the createmultiple attempts option.

Below the table, there is the “Description of the Grading Structure". By clicking on the edit
button next to the title, the teacher can describe how the final grade will be calculated. The
information entered will also be shown to the students in the “Student Interface". Finally, at

115

Great Graders Software Requirements Document

the bottomof the page there is a button called “Validate and Submit". If the grading structure
is incomplete, clicking this button will produce a warning, mentioning that the grading struc-
ture is invalid andwhat needs to be changed. However, if thefinal score structure andgrading
scheme are valid, clicking this buttonwill make the changesmade in the grading structure of-
ficial by saving it to the database.

B.1.1 Information Button

Figure B.2: “Grading Structure" view: Open Information
Clicking the “Open Information" button at the top of the page will make an information page
appear from the right side of the screen. In that page, an explanation of “Grading Structure"
viewand the “StudentGrades" viewwill be given. For example, the teacherwill be able to find
information along with tips and hints on how to set up the grading structure for their course.

116

Great Graders Software Requirements Document

B.1.2 Create Assessment

Figure B.3: “Grading Structure" view: Create Assessment
This pop-up shows upwhen the “AddComponent" item is selected in the optionmenu of a set
of assessments. At the top of this pop-up, the teacher first has to select whether the compo-
nent to be added is going to be an individual assessment or a set of assessments. The rest of
the choices dependon the initial selection from the teacher. In thepicture abovean individual
assessmentwas selected as the component to be added. The teacher thenhas to either select
one of the already defined Canvas assessments for this course, or create a new assessment.
If the teacher selects a Canvas assessment then they would only need to input the weight of
the assessment, should it need one. Otherwise, the teacher would also have to define how
themark is represented as well as set themaximum score attainable for this assessment and
input its due date. When all required inputs are filled, the teacher can finalize the process by
clicking the button “Create" to complete the creation process of an individual assessment.

B.1.3 Edit Assessment
In case a change has to be made, the teacher can select the “Edit" option inside the option
menu for each assessment or assessment set. As a result of selecting the “Edit" option, a new
pop-up appears. Its contents are similar to the “AddAssessment" pop-upwith themain omis-
sion being the selection of an assessment or assessment set.

117

Great Graders Software Requirements Document

Figure B.4: “Grading Structure" view: Edit Assessment

In the case that the “Edit" option is selected for an individual assessment there are twodiffer-
ent cases to consider. If the individual assessment is a Canvas defined assessment, only the
weight can be changed. However, if the individual assessment was created by the teacher, its
name, weight, and representation of the mark along with the maximum score and the mini-
mum requirement for this assessment can be changed. In the case that the “Edit" option is se-
lected for a set of assessments then its name,weight, calculationmethod, and representation
of themark alongwith themaximumscore and theminimumrequirement for this assessment
set can be edited.

118

Great Graders Software Requirements Document

B.1.4 Create Assessment Set

Figure B.5: “Grading Structure" view: Create Assessment Set
The option “Add assessment set component" is the second option that appears in the “Add
Component" pop-up. When selected, a different set of inputs appear. Most of them are simi-
lar to the “Add assessment component", such as name,maximumscore, andweight. However,
there is also anewone that appears only for the assessment sets. This newoption is the calcu-
lation method used to calculate the score for the assessment set. These calculation methods
are the following; weighted average, unweighted average, best/worst x out of y assessments,
maximum, minimum, sum and latest counts, as defined in the URD [1]. When all required in-
puts arefilled, the teacher canfinalize theprocess by clicking thebutton “Create" to complete
the creation process of a set of assessments.

119

Great Graders Software Requirements Document

B.1.5 Multiple Attempts Overview

Figure B.6: “Grading Structure" view: Multiple Attempts Overview
When the teacher clicks on the options menu of an individual assessment, the third option in
the optionmenu is “Multiple attempts". When this option is selected for an assessment, a sec-
ond attempt for this assessment is created and both the original assessment and its second
attempt are placed in a new assessment set. This assessment set will replace the original as-
sessment, assuming the original assessment’s weight, grading type, max. score, andminimum
requirement. The calculation of the assessment set will be set, by default, to “Maximum". An
example for the assessment “Final Exam" can be seen in figure B.7 below. Here the second
attempt for “Final Exam" was created and added with the original “Final Exam" assessment
to the assessment set “Final Exam". As the original “Final Exam" assessment had a weight of
90%, with a maximum score of 10 and a minimum requirement of 5.5, the new assessment
set assumed these values. The calculationmethod of the assessment set is then set to “Maxi-
mum" and the original assessment and its second attempt then drop their weight as they are
nowpart of an assessment setwith calculationmethod “Maximum"and thus theydonot need
aweight. With these changes, the “Final Exam" assessment now has two attempts where the
highest mark the student attains will count for 90% of the partial score for the assessment
“Written Exam".

120

Great Graders Software Requirements Document

B.1.6 Multiple Attempt Added

Figure B.7: “Grading Structure" view: Multiple Attempt Added

121

Great Graders Software Requirements Document

B.2 Student Grades view

Figure B.8: Student Grades view: Overview page
The purpose of this view is for the teacher to have access to and see the grades and marks
for all of their students in the selected course. At the top right corner, there are two buttons
namely “Import" and “Export". Clicking on the “Import" button enables the teacher to up-
load an assessment’s marks using a CSV file. On the other hand, clicking the “Export" button
creates a pop-up where the teacher can select whether they want to export marks, partial
grades, and/or final grades. Based on their selection, a CSV file will be downloaded to the
teacher’s computer containing the relevant information.

The main focus of this tab is the table at the center. The first two columns, “Name" and “Stu-
dent ID" are visible at all times,while the rest of the columnsdependon thenumber of assess-
ments imported by the teacher and the construction of the final score structure. For each im-
ported assessment and each assessment set a column is added where the corresponding cell
is filled with the student’s grade ormark.

As this table can grow extremely large, the teacher is given the option to search the data of
the table. The teacher is able searchbasedoneither theStudentNameor theStudent ID. This
can be done by pressing the “Search" icon that is next to the header of the columns, “Name"
and “Student ID", respectively. In future version of Grade Calculation, Great Graders would
also recommend adding a filter option for each column.

As can be seen in the figure above, after the first two columns the search is replaced by an
option button. This options button entails a plethora of options available for the teacher to

122

Great Graders Software Requirements Document

use such asmute and unmute, show and hide, andmark adjustment. A further explanation of
these features is given in the figure below.

At the bottom of the page, there is a red button, called “Calculate". When the grading struc-
ture and marks are finalized, pressing this button will calculate the partial grades for each
assessment set as well as calculate the final grade for each student based on the marks they
attained for each assessments. These partial grades and final grades will be displayed to the
teacher by adding columns for the grades in the table of the “Student Grades" view.

123

Great Graders Software Requirements Document

B.2.1 Settings Button

Figure B.9: Student Grades: Settings Button View
In the figure above, a view of the options menu is shown. This menu is shown only after the
options button next to the name of each assessment is clicked by the teacher. The items that
appear in this menu are “Apply mark adjustment", “Undo a mark adjustment", “Mute assess-
ment", “Unmute assessment", “Show assessment", and finally, “Hide assessment". Although it
may seem thatmuting and unmuting is identical to showing and hiding an assessment there is
an important different between them. Whenmuting an assignment, the student is still able to
see that the assessment exists however, is unable to see the grade ormark they have attained
for this assessment. On the other hand, when an assessment is hidden, the entire assessment
row is removed from the “Student Interface" and thus the existence of the assessment is not
shown to the student. Lastly, the mark adjustment is used to adjust the marks based on the
difficultly of the assessment. This is widely practice in the Netherlands, which is where the
development of Grade Calculation is located. Thus, this option was a major focus during de-
velopment and is further elaborated in Appendix B.2.2.

124

Great Graders Software Requirements Document

B.2.2 Mark Adjustment

Figure B.10: Student Grades: Mark Adjustment
If themark adjustment is selected for an assessment then a pop-upwindow appears prompt-
ing the user to input the mark adjustment formula they desire. The pop-up has two input
fieldswhich construct the formula for adjustmentwhen they are filled in. An example of such
a formula can be seen in the figure above. Then, when the “Apply" button is clicked themarks
of the corresponding assessment are changed based on the inputted formula.

125

Great Graders Software Requirements Document

B.2.3 Import and Export Buttons

Figure B.11: Student Grades: Import Button View
Clicking on the “Import" button on the top right-hand side of the “Student Grades" tab, will
produce the pop-up shown above. On the top of the pop-up, a drop-downmenu can be seen.
In this drop-down menu the teacher can select the assessment for which the marks will be
imported for. After the assessment has been chosen, the teacher can click on the “Choose
File" button. Then a local import window will be shown to the teacher. In this local window,
the teacher can select a CSV file which contains themarks for the chosen assessment.

126

Great Graders Software Requirements Document

Figure B.12: Student Grades: Export Button View

When the “Export" button is clicked in the“Student Grades" view, the pop-up shown in the
figure above will appear. In this pop-up the teacher would first have to select whether they
would like to export marks, partial grades, and/or the final grades of the students. Based on
their selection, a CSV file will be downloaded to the teacher’s computer containing the rele-
vant information.

127

Great Graders C.2

Appendix C
Transitions
The previous section discusses user interfaces in great detail. In turn, this section introduces
transitiondiagramsusing thePetriNets representation. Thesediagrams schematicallymodel
the behaviour of the application, making use of places and transitions in order to reflect vari-
ous views every interface has and the actions that are possible on these views, respectively.

C.1 Application Launch
Grade Calculation application is a plugin which is launched directly from the LMS, Canvas.
Upon application launch, Drieam Framework performs user authentication, which is used by
the Grade Calculation plugin. During the authentication, the user’s role is verified as being
either a Teacher (with the permissions stated in [1] section 2.4.1) or a Student, since these
are the main two roles. Based on the role, the user is then redirected to the corresponding
interface. The figure C.1 shows the corresponding transition to the respective interface.

Figure C.1: Transition Diagram of Application Launch

BothTeacher and Student interfaces allow formultiple transitions, which are discussed in the
sections below.

C.2 Student Interface
The Student Interface displays the marks and grades for a particular student. Here the stu-
dent can examine their grades by expanding the tree-view table. Additionally, there is a pos-
sibility for the student to export theirmarks and grades. For this purpose, the application has

128

Great Graders Software Requirements Document

a separate ExportView, implemented as a pop-up dialog. The figureC.2 below captures these
actions in a transition diagram.

Figure C.2: Transition Diagram of Student Interface

C.3 Teacher Interface
The Teacher Interface has two views: “Grading Structure" view and“Student Grades" view.
They can be reached by clicking the appropriate tabs in the interface (see figure C.3).

Figure C.3: Transition Diagram of Teacher Interface

The figure C.4 below shows the transition diagram for the “Grading Structure" view. It is pos-
sible to access the Information View from this page. Besides this, the “Grading Structure"
view allows a teacher to select a grading scheme, edit the final score structure, edit descrip-
tion of grading structure, and save the progress. These are self-transitions because they do
not require separate views and can be implemented on the “Grading Structure" view itself
(e.g. by using a drop-down menu, a button, or an editable text field). Finally, there is a possi-
bility to validate and submit the final score structure once it has been completed.

129

Great Graders Software Requirements Document

Figure C.4: Transition Diagram of “Grading Structure" view

The last figure C.5 captures the behavior of the“Student Grades" view. The main purpose of
this view is to display the grades of all students to a teacher of the specific course.
When the teacher navigates to the“StudentGrades" view, the application detects if there has
been an update in the grades. If this is the case, the application will display a warning, no-
tifying that the grades have to be recalculated. In the diagram, this is the state called “Stu-
dent Grades view withWarning". The teacher can either close this warning, working in Out-
dated“Student Grades" view (without the warning), or initiate the recalculation of grades,
getting to an up-to-date“Student Grades" view (without the warning). The three places men-
tioned above allow for the same transitions, however only the“Student Grades" view is elab-
orately explained in the diagram for simplicity.
The grades on the“Student Grades" view are displayed in columns per assessment. Further-
more, the view allows for the manipulation of marks of a specific assessment. Adjusting the
marks is possible via setting the “Mark adjustment", which is implemented as a pop-up dia-
logue, and thus is shown separately as theMarkAdjustment View. Furthermore, it is possible
tomute and unmute any assessments, as well as hide and show the final grades. Finally, there
is a possibility for the teacher to search the grades by the student name or the student ID.
Moreover, the“StudentGrades" viewsupports importingandexportingof the“StudentGrades".
Both of these actions require separate views, which are displayed as ImportGradesView and
Export Grades View in the diagram.

130

Great Graders Software Requirements Document

Figure C.5: Transition Diagram of“Student Grades" view

131

	Introduction
	Purpose
	Scope
	List of Definitions
	Definitions
	Abbreviations and Acronyms

	List of References
	Overview

	General Description
	Relation to Current Projects
	Relation of Predecessor and Successor Projects
	Function and purpose
	Environment
	Relation to Other Systems
	Canvas

	General Constraints
	Security and privacy
	Usability
	Environment
	Language
	Performance
	Reliability

	Model Description
	Environment Model
	Class Diagram
	Data Model
	Sequence Diagrams

	Specific Requirements
	Functional Requirements
	Student Interface
	Teacher Interface - Grading Structure
	Teacher Interface - Student Grades
	Administrator Interface - Grading Structure
	Administrator Interface - Student Grades
	Course
	Assessment
	Student
	Mark
	Grade
	Score
	Constant
	Calculation Method
	Condition
	Grading schemes
	Grade Calculator
	Import
	Export
	Controllers
	REST API Controller
	Score Structure Validator
	Authorization
	Routes
	Audit logs
	Notification

	Requirements Traceability Matrix
	URD to SRD
	SRD to URD

	User Interface - Student
	Student View

	User Interface - Teacher
	``Grading Structure" view
	Information Button
	Create Assessment
	Edit Assessment
	Create Assessment Set
	Multiple Attempts Overview
	Multiple Attempt Added

	Student Grades view
	Settings Button
	Mark Adjustment
	Import and Export Buttons

	Transitions
	Application Launch
	Student Interface
	Teacher Interface

