Software Requirements Document

2IPEO SOFTWARE/WEB ENGINEERING PROJECT GREAT GRADERS

A. Agaronian
1017525

CWS. Freyer
1036039

C. Gutiérrez Bierbooms
1028054

T.P.H. Hoeijmakers
0996802

T.K.H.G. Jansen
1003562

T. Kafoe
1194252

I. Makantasis
1002480

K. Mankevic
1036163

R.D. Sinx
1001972

[.M. Smits
1010890

K.R. Vlaswinkel
1016271

Quartile 4 - Group 5

Date
July 3,2019

Version
1.0

Managers
A.S. Brouwers
G. Walravens

Supervisor
dr. S. Roubtsov

Customer
B. Corbijn, G. Vaessen

GREAT GRADERS

Abstract

This document is the Software Requirements Document (SRD) for Grade Calculation, devel-
oped by Great Graders. Grade Calculation is a Learning Tools Interoperability (LTI) plugin for
the Learning Management System (LMS) Canvas. The requirements for this SRD correspond
with the requirements listed in the User Requirements Document (URD) for Grade Calcula-
tion [1].

Grade Calculation is developed as part of the Software Engineering Project (2IPEQ) at the
Technical University of Eindhoven. Moreover, this document complies with the ESA software
standards [2].

Great Graders

Software Requirements Document

Contents

1

2

3

Introduction

11
1.2
1.3

14
1.5

Purpose
Scope

List of Definitions
Definitions
1.3.2 Abbreviations and Acronyms
List of References
Overview

1.3.1

General Description

21
22
23
24
25

2.6

27

Relation to Current Projects
Relation of Predecessor and Successor Projects
Function and purpose
Environment

Relation to Other Systems

251

26.1
2.6.2
263
264
2.6.5
2.6.6

271
272
273
274

Canvas
General Constraints

Security and privacy

Usability
Environment
Language
Performance
Reliability
Model Description

Environment Model

ClassDiagram
DataModel

Sequence Diagrams

Specific Requirements

3.1 Functional Requirements
StudentInterface
Teacher Interface - Grading Structure
Teacher Interface - Student Grades
Administrator Interface - Grading Structure
Administrator Interface - Student Grades
Course
Assessment
Student
Mark
3.1.10 Grade

3.1.1
3.1.2
3.1.3
3.14
3.15
3.1.6
3.1.7
3.1.8
3.1.9

O O O CONNONUTUn Ut

@GREAT GRADERS

Great Graders Software Requirements Document

3111 Score . .. e e 75

3112 Constant 75

3.1.13 CalculationMethodo 76

3.1.14 Condition. e 78

3.1.15 Gradingschemes 79

3.1.16 GradeCalculator 81

3117 Import . .. e e e 82

3018 EXport . .. e e e 86

3.1.19 Controllers e 86

3.1.20 RESTAPIController i .. 92

3.1.21 Score StructureValidator 95

3.1.22 Authorization e 95

31283 Routes e e e 95

3.1.24 Auditlogs. e 97

3.1.25 Notification 98

4 Requirements Traceability Matrix 99
41 URDtOSRD e 99
42 SRDtoURD e 106

A User Interface - Student 112
Al StudentView e e 112

B User Interface - Teacher 114
B.1 “GradingStructure"view 114
B.1.1 InformationButton, 116

B.1.2 CreateAssessment e 117

B.1.3 EditAssessment. e 117

B.1.4 CreateAssessmentSet. 119

B.1.5 Multiple AttemptsOverview 120

B.1.6 Multiple AttemptAdded 121

B.2 StudentGradesview e 122
B.2.1 SettingsButton 124

B.2.2 MarkAdjustment 125

B.2.3 Importand ExportButtons 126

C Transitions 128
C.1 ApplicationLaunch e 128
C.2 StudentiInterface e 128
C.3 Teacherinterface e 129

@GREAT GRADERS

Great Graders

0.0

Document Status Sheet

General

Document title:

Software Requirements Document

Document identifier: SRD/1.0
Authors: A. Agaronian 1017525
CWSS. Freyer 1036039
C. Gutiérrez Bierbooms 1028054
T.P.H. Hoeijmakers 0996802
T.K.H.G. Jansen 1003562
T. Kafoe 1194252
I. Makantasis 1002480
K. Mankevic 1036163
R.D. Sinx 1001972
I.M. Smits 1010890
K.R. Vlaswinkel 1016271
Document status: Done
Document History
Version Date Authors Reason
0.1 09-05-2019 All Setting up framework document
0.2 13-06-2019 All First draft
0.3 27-06-2019 All Implemented feedback and added missing
sections
1.0 01-07-2019 K.R.Vlaswinkel Implement feedback

@GREAT GRADERS

Great Graders

0.0

Document Change Record

Version Date Section Reason

0.1 09-05-2019 All Setting up framework document
0.2 13-06-2019 Al First draft

0.3 27-06-2019 Al Second draft

1.0 01-07-2019 Performance Implement feedback

@GREAT GRADERS

Great Graders 1.3.1

Chapter 1

Introduction

1.1 Purpose

This Software Requirements Document (SRD) contains the software requirements for the
Grade Calculation plugin. The requirements in this document are a translation of the user
requirements listed in Chapter 3 of the User Requirements Document (URD) for Grade Cal-
culation [1]. The URD formulated the desired functionality of the plugin, whereas the SRD
describes how this functionality is to be implemented. These requirements are developed in
accordance with B. Corbijn and G. Vaessen, the customers and commissioners of the project.

1.2 Scope

Great Graders is a team of Bachelor students working on a Software Engineering Project for
the TU/e, B. Corbijn and G. Vaessen. B. Corbijn and G. Vaessen are representatives of Drieam
B.V. (further referred to as Drieam), a company that provides support to European universi-
ties and other educational institutions when operating Canvas.

Canvas is a Learning Management System (LMS) which makes the teaching and learning pro-
cesses easier. It is an easy and convenient platform for educators to organize courses for
students. Additionally, it offers a vast number of functionalities for submitting assessments
and providing feedback on these submissions using the SpeedGrader.

The goal of Great Graders is to develop a Learning Tools Interoperability (LTI) plugin for Can-
vas that streamlines the grading process for educational institutes from grading individual
assignments in Canvas to publishing final grades in the Student Information Systems (SIS).

1.3 List of Definitions

@GREAT GRADERS

Great Graders

Software Requirements Document

1.3.1 Definitions

Canvas An open-source Learning Management System
(LMS) developed by Instructure [3].

MoSCoW A prioritization technique used in software devel-
opment to reach a common understanding with
stakeholders on the importance of each require-
ment.

Submission The work that the student submits.

Assessment Any work a student can be graded on, e.g. Quiz,

Written Exam, Report.

Calculation method

Arule used to compute a partial score.

Marks The judgment of the quality assigned by the teacher
to a submission of a student on a specific assess-
ment as defined by the mark type.

Score Either a final score or a partial score.

Partial scores

The result of applying a calculation method on a set
of partial scores and/or marks.

Final score

The result of applying a final score structure.

Partial grade

A partial score on which a grading scheme has been
applied.

Final grade

A final score on which a grading scheme has been
applied. This is usually the end result of the course.

Final score structure

A collection of calculation methods which takes
marks as input and outputs a final score.

Grading scheme

The conversion process from a score to a grade by
applying a grading standard, e.g. into a letter grade
or into a grade in the range 0-10.

Description of final score structure

A brief outline explaining how the final score is cal-
culated added by the teacher.

Score type

A data item that determines the calculation range
of the score (e.g. ‘complete_incomplete’, ‘percent;,
‘points’).

Mark type

A data item that determines the calculation range
of the mark (e.g. ‘complete_incomplete’, ‘percent;,
‘points’).

Final grade type

The type of the final grade. (e.g. letter grade (US),
1-10 rounding to the nearest integer, GPA scale).

Calculation range

A range of all values that a mark or score can take.

Contents of an assessment

Information about the assessment containing as-
sessment name, calculation range, mark type, SIS ID,
and the students’ corresponding marks.

@GREAT GRADERS

Great Graders Software Requirements Document

+and - system The system used in Dutch primary schools
where a student can get an+ or n— grade,
where n is an integer between 0 and 10
(e.g. 8+ or 8-, where these grades corre-
spond to 8.25 and 7.75 respectively).

Letter system following British standards British Letters grade system as defined by
the Grade Point Average system [4].

Letter system following American standards Letter grade system used as default by
Canvas [5].

CSVfile Comma-separated values file, a file type
used to store tabular data.

LTI Launch An LTI launch is used to load an LTI plu-
gin from an LMS, such as Canvas. When
the Canvas page is loaded, a hidden HTML
form is submitted as a POST request to
the LTI plugin. From this request the page
is able to retrieve the necessary informa-
tion to store the user’s data and page con-
text. A signature is included to verify the
authenticity of the launch data.

1.3.2 Abbreviations and Acronyms

URD User Requirement Document

SRD Software Requirement Document

TU/e Technical University of Eindhoven

LMS Learning Management System

LTI Learning Tools Interoperability

SIS Student Information System

API Application Programming Interface

1.4 List of References

[1] Grade Calculation, User requirements document. Eindhoven University of Technology, 2019.
[2] E.B.for Software Standardisation and Control. ESA software engineering standards, 1991.
[3] Ellis, Ryann K., Field Guide to Learning Management. ASTD Learning Circuits, 2009.

[4] https://www.heacademy.ac.uk/system/files/resources/Guide%20on%
20grade%20point%20average%20for%20students_0.pdf.

[5] https://community.canvaslms.com/docs/DOC-13067-4152206341.

[6] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), European Union, Apr. 2016.

[71 D.Haughey, Moscow method,https://www.projectsmart.co.uk/moscow-method.
php, [Online; accessed 26-April-2019]. [Online]. Available:https: //www.projectsmart.

co.uk/moscow-method. php.
@GREAT GRADERS
7

https://www.heacademy.ac.uk/system/files/resources/Guide%20on%20grade%20point%20average%20for%20students_0.pdf
https://www.heacademy.ac.uk/system/files/resources/Guide%20on%20grade%20point%20average%20for%20students_0.pdf
https://community.canvaslms.com/docs/DOC-13067-4152206341
https://www.projectsmart.co.uk/moscow-method.php
https://www.projectsmart.co.uk/moscow-method.php
https://www.projectsmart.co.uk/moscow-method.php
https://www.projectsmart.co.uk/moscow-method.php

Great Graders Software Requirements Document

1.5 Overview

The remainder of this document consists of three chapters.

Chapter 2 is a general description of Grade Calculation. In Section 2.1, the context of Grade
Calculation in relation to other current projects is detailed. In Section 2.2 details about the
context of Grade Calculationinrelation to past and future projects are presented. Section 2.3
consists of a general description of the function and purpose of Grade Calculation. Next, Sec-
tion 2.4 contains the general overview of the operational environment. In Section 2.5, the
relations between Grade Calculation and other systems are described. Section 2.6 describes
the general constraints that Grade Calculation must comply with. Lastly, Section 2.7 is a de-
scription of the logical model, including an environment model, a class diagram, a data model,
and sequence diagrams.

Chapter 3 includes a detailed list of software requirements. These are divided into two sub-
sections; functional, and non-functional requirements. In this section, the implementation of
the requirements that were agreed upon with B. Corbijn, the customer, is defined.

Chapter 4 includes a traceability matrix, to ensure that all user requirements from the URD
[1] are included as a software requirement in the SRD. This matrix maps each user require-

ment to its matching software requirement(s) and vice-versa.

Lastly, in the Appendices, Ul mockups for both the Student and the Teacher Interface, as well
as transition diagrams between views are provided.

@GREAT GRADERS

Great Graders 2.2

Chapter 2

General Description

2.1 Relation to Current Projects

Grade Calculation extends the functionality of Canvas, an LMS that allows teachers and stu-
dents to share content and interact throughout the duration of a course. Since Grade Calcu-
lation will be replacing and extending the grading functionality of Canvas, the current grading
functionality of Canvas is closely related to Grade Calculation. Thus, Grade Calculation will
be tightly integrated with Canvas. Yet, Grade Calculation will allow for more flexibility and
provide a wider range of grading options required by educational institutions, such as mark
adjustment.

SISs, such as Osiris, are also strongly co-related to Grade Calculation. Canvas currently of-
fers functionality to export marks and grades as a CSV file, which could potentially be im-
ported into a SIS. The SIS can then either import the grades directly or the final score can be
calculated externally and entered into the SIS. However, both options create unnecessary in-
conveniences for the administration. Firstly, Canvas does not export the grades in a format
that is accepted by most SISs and thus importing the grades into a SIS cannot be done di-
rectly. Secondly, calculating the grades externally and manually entering them into OSIRIS is
a highly error prone process. Therefore, Grade Calculation allows for a centralized and flex-
ible means to calculate the grades that can be directly exported to a SIS. Moreover, Grade
Calculation extends the functionality of Canvas by providing mark adjustments to normal-
ize marks and allows for an easy way to create multiple attempts for assessments, which are
both key factors missing in the current design of Canvas.

Blackboard, another LMS, has more extensive grading functionality compared to Canvas. It
supports calculated columns, including averages, minimum/maximum, totals, and weights.
However, despite offering greater grading functionality, it requires switching to a completely
different LMS, which might not have the same required functionality in other areas of use.
Therefore, it is unlikely that educational institutions would shift to a different LMS just for
the convenience of a slightly better grading functionality. Especially if the functionality of
Canvas could be extended directly using the Grade Calculation plugin.

2.2 Relation of Predecessor and Successor Projects

There are no formal predecessor projects for Grade Calculation. However, Grade Calculation
will extend the current Canvas workflow that is embedded into Canvas. Therefore, Grade

@GREAT GRADERS

Great Graders Software Requirements Document

Calculation will rely on some of the current Canvas workflow elements and adjust the pro-
vided functionality based on the feedback of potential clients. Thus, the Canvas workflow
will serve as a basis and as a data entry to get Canvas assignments in Grade Calculation.

After the development of Grade Calculation, Drieam will create their own product that will
be based on Grade Calculation. Therefore depending on the final product, functionalities of
Grade Calculation might be extended, and existing functionalities are likely to be rewritten.
Grade Calculation will serve as a proof of concept that Drieam will use as a base for their
plugin. Drieam is already in contact with universities that could be potential customers for
their plugin, and thus Grade Calculation has also complied with the requirements that these
potential customers expect from such a plugin. Complying with these requirements will help
in making Grade Calculation a proper base for the successor project of Drieam.

2.3 Function and purpose

Nowadays, many universities use Canvas as their LMS. Canvas offers functionality for sub-
mitting assessments, grading them, publishing grades and providing feedback. As this infor-
mation is already present in Canvas, it is reasonable to want to centralize all the information
of the course to the students by providing them with their marks and grades. However, Can-
vas does not have sufficient capabilities to calculate partial or final grades. At many universi-
ties this creates an inconvenient situation for the administration who need to execute certain
tasks such as awarding ECTS credits. Grade Calculation will offer a more extensive alterna-
tive for the built-in grading workflow of Canvas and will provide a way to facilitate an efficient
grading process. It will overcome the existing challenges in Canvas by the implementation of
the following functions:

e Define afinal score structure: Grade Calculation allows for defining complex score struc-
tures that are evaluated recursively.

¢ Final grade calculation: Grade Calculation can calculate, in aflexible way, the final grade
of a course based on marks obtained during the course and a grading scheme of choice.

e Importing marks: Teachers can import marks in Grade Calculation. These marks can
be obtained from assignments in Canvas, or imported from an external data source.
Optionally a final score structure and/or grading scheme can be applied to these marks
resulting in grades that can be published to students.

e Retrieval of data: Grade Calculation provides an endpoint so that the course results
can be retrieved, with the possibility of being submitted to the SIS in a confined manner.
This would allow for reducing manual labour in the registration process, to a minimum
(i.e. if SIS supports automatic grade registration from a data source, it can be connected
to Grade Calculation so that no manual work needs to be done).

2.4 Environment

Grade Calculation is going to be used in a web-based environment. Since the tool runs inside
the Canvas environment it is imperative that it supports all the browsers currently supported
by Canvas. The plugin itself will run on an external server and will be embedded into Canvas
by means of a frame. The plugin should therefore be developed such that it can be used cor-
rectly from within a frame. Furthermore, since the plugin does not run on the same server as
Canvas, the external server does need to communicate with Canvas through its API.

@GREAT GRADERS
10

Great Graders Software Requirements Document

Considering the fact that Canvas is developed using the Ruby on Rails framework and Re-
act, and the fact that Drieam works with these languages, Grade Calculation uses the same
framework in order to support maintainability and to simplify integration.

Regarding data management, PostgreSQL is used due to the fact that Drieam’s platform makes
use of this database. In addition, PostgreSQL provides various features that fit Grade Calcu-
lation’s requirements.

2.5 Relation to Other Systems

The main system related to Grade Calculation is Canvas. In fact, Grade Calculation depends
on Canvas in its entirety, as it is a plugin made specifically for Canvas. Grade Calculation is
not standalone and will not function if Canvas is offline or otherwise unavailable.

2.5.1 Canvas

Grade Calculation is an LTI plugin for Canvas that streamlines the grading workflow for edu-
cational institutes. Currently there are no other plugins that attempt to replace the grading
workflow in Canvas. However, Canvas itself offers a grading environment that also includes
the calculation of grades, importing, and exporting grades. Yet, the grading environment of
Canvas is limited to a handful of actions. The limited possibilities of the grade process ca-
pabilities in Canvas gave rise to this project. Grade Calculation will replace the built-in grade
display and calculation of Canvas itself. However, it is important to note that Canvas could po-
tentially extend their capabilities regarding grading workflow, which might decrease the ne-
cessity of Grade Calculation. However, no plans for such an extension have been announced,
and it is unlikely that all functionality will be added to Canvas in the near future.

2.6 General Constraints

2.6.1 Security and privacy

Grade Calculation should highly value the constraints of security and privacy. Since the plu-
gin will run on a separate server, steps need to be taken to ensure that the data is secured.
In order to prevent data from being exposed to third parties information needs to be trans-
ferred to the server in a secure way. It is therefore clear that only HTTPS connections should
be used between Canvas and the server, such that only encrypted data-communication is al-
lowed. This will also guarantee that information is not altered during transmission.

Users of Grade Calculation should not have access to information they are not authorized to
view. Therefore, Grade Calculation needs to inherit the permission scheme of Canvas and
only allow for data retrieval that adheres to the permissions of the user. The infamous SQL
injection could harm these permissions and possibly enable users to view data they are not
authorized to view. Moreover, SQL injection could harm integrity of data. Therefore, input
sanitation should be performed to prevent SQL injection and other such injection attacks.

Since Grade Calculation will be used by organizations, Grade Calculation will also need to
comply with the European General Data Protection Regulations (GDPR) [6]. This will create
some additional requirements for the software. In the case of Grade Calculation the most

@GREAT GRADERS
11

Great Graders Software Requirements Document

relevant article in the GDPR is Art 25. (Data protection by design and by default). An impli-
cation of this article is the limited time frame that user data can be stored after graduation.
Therefore, it should be possible to remove the data after this time period ended. The other
rights of the data subjected in Ch. 2 of the GDPR are not strictly required, because either
these are to be implemented by the educational institution or because they are not required
due to the basis of processing.

Furthermore, only data that is strictly required for the proper functioning of Grade Calcula-
tion should be stored. Information that can be fetched from the Canvas API should only be
stored if this is needed for the proper functioning of Grade Calculation. Thus, if it does not
cause too much overhead, data is only fetched from the Canvas API and not stored by Grade
Calculation.

Art 25. of the GDPR is taken into account and as such, the specified technical and organiza-
tional techniques are used to protect data, for example pseudonymisation.

2.6.2 Usability

On the web, users are used to navigating over sites and web apps without needing additional
explanation. It is therefore clear that Grade Calculation should work intuitively in order for
Grade Calculation to be successful. Grade Calculation will accomplish this by trying to give
an acquainted feel to the users of Grade Calculation. The plugin will comply with the style
of Canvas by using native Canvas Ul components, or Ul components that provide a similar
look and feel, to increase usability. For components not available from Canvas, existing de-
sign libraries such as Ant Design will be used to again make the user feel familiar with the
interactions of the plugin.

A main task of a Teacher user of Grade Calculation is to define score structures. Multiple
options can be used to define these score structures. By providing clear input components,
the Teacher should know with what elements they can interact with. Furthermore, text labels
will be placed appropriately so that it is more clear what the results of an interaction is. For
some teachers it might not be clear at first glance how all options can be used. Thus, a help box
on the page to define a score structure is available to provide some more textual information
about how to enter a final score structure. Furthermore, a user manual is available for more
in depth information on all the options and how they can be used.

2.6.3 Environment

Grade Calculation is used in a web-based environment. As Grade Calculation is a Canvas LTI
plugin, it should support all the browsers which are supported by Canvas. For Grade Cal-
culation the supported browsers are: Google Chrome version 72/73, Mozilla Firefox ver-
sion 65/66, Safari version 11/12 for MacOS, Microsoft Internet Explorer version 11, and Mi-
crosoft Edge version 42/44.

Grade Calculation is developed using Ruby, React, the Ruby on Rails framework, and the
Drieam framework. This is due to the fact that Canvas is developed using Ruby, React, and
Ruby on Rails, which simplifies integrating the LTI to Canvas and maintaining Grade Calcula-
tion with respect to updates of Canvas. Additionally, the Drieam framework helps accelerate
the creation of the LTI plugin as Drieam designed it to be used in a wide variety of LTI plugins.

Data management in Grade Calculation is done using PostgreSQL. PostgreSQL is a relational
database management system to store information. It was chosen as it provided Great Graders

@GREAT GRADERS
12

Great Graders Software Requirements Document

with all the functionality needed to meet Grade Calculation requirements. Moreover, Post-
greSQL is used within Drieam’s platform.

2.6.4 Language

Canvas supports a variety of languages and is internationally used. As English is the default
language of Canvas and is the standard international language, it is important that Grade Cal-
culation is implemented in English. Thus, Grade Calculation supports the English language
and can be extended at a later stage to include different languages. The front-end uses i118n-
react which also simplifies new language extensions desired in the future.

2.6.5 Performance

A Canvas instance can have up to 50 thousand users. As Grade Calculation deals with the
marks, scores, and grades of users, Grade Calculation will also deal with a large part of these
50 thousand users. This means Grade Calculation should be able to support a vast amount of
users and be able to process the data belonging to these users.

It is expected that the final score calculation will calculate the grades for a single student
within 2 seconds. Importing marks from a CSV file is expected to take at most 60 seconds,
while exporting grades is expected to complete within 5 minutes. Changing the visibility of
marks or whether they are muted will be visible to the student within 30 seconds. These es-
timations are within the bounds formulated in the URD [1].

With regards to response times, it is expected that the front-end assets are compiled within
300,000 milliseconds and that for all subsequent actions the web interface will react within
200 milliseconds per action. These statistics are all based on the maximum response times
allowed while enabling a user-friendly and usable product.

Grade Calculation uses PostgreSQL as its relational database. As Grade Calculation needs to
support a vast amount of users all their data will have to be processed as well. This means the
PostgreSQL database should be able to handle a vast amount of data and the queries that are
runonit.

2.6.6 Reliability

It is important to guarantee the functioning of Grade Calculation. If teaching institutes are to
use Grade Calculation, they will require a reliable tool that has a high uptime. When Grade
Calculation would be down, it would significantly harm the grading administration, as by de-
sign many stakeholders will rely onit.

Moreover, it is important that grades of students are correct and up to date. If a data-source
provides updated information it is the task of Grade Calculation to ensure that the updated
information is used in its process. For example, if a teacher is editing a final score structure
for one course, Grade Calculation should adjust the final score structure for only that course.

2.7 Model Description

@GREAT GRADERS
13

Great Graders Software Requirements Document

2.7.1 Environment Model

In Figure 2.1, one can see the Grade Calculation in its environment. The area in grey defines
the scope of Grade Calculation. The remainder is part of the existing environment.

@GREAT GRADERS
14

Great Graders

Software Requirements Document

Page 000
nvas.tue.nl/courses/1234/grad
Navigates—>
A A
Request Response
y Canvas
Authenticated
Request
€
Response
Canvas API Call APl Response
Grade|Calculation
Front End v
Grade Calculation Interface
A
Back End
Y
Grade Calculation Back-end

<
<
Grade | Student Information
Calculation >
<) s > (> System (SIS)
API end-points to add API end-points to send
assignment results grades to SIS
Drieam LTI App
O_) Framework _)O
CSV Import

CSV Export

Grade
Calculation
Database

Figure 2.1: The Grade Calculation plugin in the environment

@GREAT GRADERS
15

Great Graders Software Requirements Document

2.7.1.1 Canvas

Grade Calculation is a plugin within Canvas. A user navigates on the Canvas website and re-
quests to the Canvas server will be sent accordingly. The Canvas server will handle these re-
quests by sending the appropriate responses. The plugin will be hosted on an external server
and loaded in a frame. Therefore, some requests resulting from the Canvas responses will
then be sent to Grade Calculation in order to load the plugin into the frame. The responses
from the Canvas server allow for making authenticated requests towards Grade Calculation
so that Grade Calculation can provide user-specific data.

2.7.1.2 Student Information Systems (SIS)

SISs are software designed web-based applications that introduce a useful and structured
information flow environment for students, teachers, and the administration of a teaching
institute. A SIS will be able to obtain grades for the students from Grade Calculation.

2.7.1.3 Grade Calculation Interface

The front-end of Grade Calculation takes care of the proper visualization of data in the Grade
Calculation Interface, which is embedded into the Canvas website. The front-end handles the
user interaction by sending the appropriate requests to the back-end.

2.7.1.4 Drieam LTI Framework

The back-end of Grade Calculation will rely on the Drieam LTI framework. This framework is
provided by Drieam. The Drieam LTI framework allows for easy coupling with Canvas, facili-
tating processes such as authentication and data retrieval.

2.7.1.5 Grade Calculation back-end

The Grade Calculation back-end implements all server side functionality to be used by the
front-end. It serves as an extra control layer between the front-end and the back-end database,
and itis responsible for authentication (using the Drieam LTI framework), providing the front-
end with the correct data to be displayed, importing data from Canvas, and reading from and
writing to the database.

2.7.1.5.1 Grade Calculation Logic The Grade Calculation Logic is one of the major mod-
ules of the Grade Calculation Back-end which implements all functionality with regard to the
calculation of the final grade. It receives the necessary data to perform calculations and re-
turns the calculated grades for each student.

2.7.1.6 Grade Calculation’s Database

The back-end database stores all necessary information that is needed for the full functional-
ity of Grade Calculation. It is a stand-alone database without any dependency on an external
database. The database will contain information about the courses, the students, the assess-
ments, the marks, and the grades.

@GREAT GRADERS
16

Great Graders Software Requirements Document

2.7.1.7 APl endpoints
The back-end exposes two API endpoints: one that allows other systems to input marks into

Grade Calculation, and one that allows for obtaining partial and final grades from Grade Cal-
culation.

2.7.1.8 CSV import and export

Apart from the endpoints, the back-end has the ability to import CSV files with marks and
export CSV files with grades.

2.7.2 Class Diagram

ZeroToTen2Decimal Percentage
ZeroToTenlnteger LetterUK

[oo |

interface>
GradingSchemelnterface

recheckRequirements + compute(score: Score): String [mmnmnmmmnmennannnne e)

+checkRequirement(requirements: Hash, marks: Hash): Boolean

A GradingSchemeHandler

CustomGradingScheme
nvert String): Class
MandatoryCheck " "o +id: String
; i + convertToAssociatedGradingScheme(
Boolean : i String): Class + name: Sting
H GradeCalculationLogicEndpoint ;
+ description: String
+):
Score +boundaries: Hash
c Hash, tree: Node):Hash +value: Numeric
; +type: String + schemes(){GradingSchemelnterface]
\/ + mapldName(tree: Node): Hash
MarkAdjustment + gradeCalculation tree: Node, assessmentinfo: Hash, :
String, Hash): Hash i
+ caleulateMark(value: String, assessmentinfo:Hash, id:Symbol): Rational or String -
H <<interface> <dinterface>>
: TreeBuilder CalculationMethod
+ caloulateScore(studentMarks: Hash, <+ buLevellparOfSiructure: Hash): Nodo + calculate(scores: [Scorel, args: Hash): Score
partalScores: Hash, faiures: Hash,
assessmentinfo: Hash): Score. A A
.......... AssessmentCheck : § 1
. oo 3 St
MarkNode 1
+ assessmentld: String : : ;
+ gradingType: Siring :
+max: Numeric/Boolean H WeightedAverage UnweightedAverage
DisplayMarkEndpoint ; =
+ transformMark(gradingScheme: String, mark: String,
Hash, String): String
CalculationNode Constant ‘ Sum ‘ ‘ Latest ‘
+ calculationMethod: CalculationMethod + gradingType: String
1 arge: Has +value: Numeric/Boolean
'+ chidrent [Node] + max: Numeric/Boolean

+nodeNarme: String
+nodeld: String
+ requirement: Numeric

Figure 2.2: UML Grade Calculation Logic Class diagram

Sections 2.7.2.1 to 2.7.2.5 refer to the class diagram for the Grade Calculation logic module
found in Figure 2.2.

2.7.2.1 Tree construction

2.7.2.1.1 TreeBuilder The TreeBuilder class offers a single functionality: its purpose is to
turn avalidinput hash into the tree structure that Grade Calculation uses to calculate student

@GREAT GRADERS
17

Great Graders Software Requirements Document

grades.
This class has the following method:

e buildLevel(partOfStructure: Hash): Node
Takes in a valid hash according to specifications, and uses it to recursively construct the
tree structure. It returns the root Node of the tree.

2.7.2.1.2 Node The Node is an interface that is used to define the methods of the other
tree node classes.

This interface has the following method:

e calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentlnfo:
Hash): Score

Every Node should in some way, using its attributes and/or parameters, be able to pro-
duce a Score object.

2.7.2.1.3 CalculationNode The CalculationNode class represents the calculation of a par-
tial score within the final score structure.
An instance of this class has the following attributes:

¢ calculationMethod: CalculationMethod
e args: hash containing parameters for the calculation
e children: array of children nodes of this calculation node
¢ nodeName: string
¢ nodeld: unique string within the final score structure
¢ requirement: number greater than or equal to O
An instance of this class has the following method:

e calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentlnfo:
Hash): Score
Stores the calculation result in partialScores using the nodeld as a key, and returns the
calculationresult. Additionally, before returning it checks if the calculation result meets
the requirement, and if not, adds a failure description to failures using nodeld as a key.

2.7.2.1.4 MarkNode The MarkNode class represents an assessment mark within the final
score structure.

An instance of this class has the following attributes:
¢ assessmentld: a unique string or symbol for an assessment

o gradingType: a string that defines what kind of assessment the class represents, either
‘percentage’ or ‘points’

e max: the maximum mark for this assessment
An instance of this class has the following method:

e calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentlnfo:
Hash): Score
Looks up the assessmentld in the studentMarks hash, calls the MarkAdjustment class
with the found value, and returns the result.

@GREAT GRADERS
18

Great Graders Software Requirements Document

2.7.2.1.5 Constant The Constantclassrepresentsauser-defined constantinthe final score
structure. An instance of this class always returns the same value regardless of the marks of
the student.

An instance of this class has the following attributes:

¢ gradingType: a string that defines what kind of constant the class represents, ‘percent-
age’ is converted to ‘points’ for internal consistency

e value: the value of this constant
e max: the maximum of this constant, used for turning the value into a fraction
An instance of this class has the following method:

e calculateScore(studentMarks: Hash, partialScores: Hash, failures: Hash, assessmentinfo:
Hash): Score
Returns a Score that represents the value of this constant.

2.7.2.2 Calculation Methods

2.7.2.2.1 CalculationMethod The CalculationMethod class is an interface that is used to
unify the implementation of the other calculation method classes.
This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Every calculation method has a method calculate that accepts two arguments: scores:
[Score] and args: Hash. Each calculation method requires different arguments, which
are stored in the args hash. This hash may be empty for some calculation methods, but
should not be nil.

2.7.2.2.2 WeightedAverage The WeightedAverage class computes the weighted average
of aset of scores.
For this class the args hash contains the following key/value pairs:

e weights: [Hash]
One weight per score. Weights are fractions as a hash of the form { numerator: int,
denominator: int }

This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Calculates the weighted average of a set of scores using the specified set of weights for
each score. These weights are found in the args hash.

2.7.2.2.3 UnweightedAverage The UnweightedAverage class calculates the unweighted
average of a set of scores.

For this class the args hash does not contain key/value pairs.

This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Calculates the unweighted average of a set of scores.

2.7.2.2.4 BestWorstXOfY The BestWorstXofY class is used to compute the unweighted
average of the best or worst x scores of the received y scores, with the option of setting cer-
tain scores to always count.

For this class the args hash contains the following key/value pairs:

@GREAT GRADERS
19

Great Graders Software Requirements Document

e X:int
how many assignments should count

¢ always_counts: [boolean]
One boolean per score. A boolean is set to true if the corresponding score should al-
ways be included in the average.

e best_worst: boolean
A boolean set to ‘true’ if best x out of y is desired, and to ‘false’ if worst x out of y is
desired.

This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Calculates the unweighted average of the best or worst x scores of the received y scores,
including those scores set to always count.

2.7.2.2.5 MaximumMinimum TheMaximumMinimum class that takes either the minimum
or the maximum of a list of scores.
For this class the args hash contains the following key/value pairs:

e maximum: boolean
A boolean set to true if maximum score is desired and to false if minimum.

This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Finds either the maximum or minimum score in scores depending on the maximum value
in the args hash.

2.7.2.2.6 Latest The Latest classtakes the latest score of a set of scores.
For this class the args hash contains the following key/value pairs:

e dates: [date]
Array of dates with one date per score.

This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Finds the latest available score in scores by checking the ‘dates’ array in the args hash

2.7.2.2.7 Sum The Sum class takes the minimum between 1 (equivalent to 100%) and the
sum of a set of scores.

For this class the args hash does not contain key/value pairs.

This class has the following method:

e calculate(scores: [Score], args: Hash): Score
Calculates the sum of a set of scores, which is capped at 1.

2.7.2.3 Grading schemes

2.7.2.3.1 GradingScheme GradingScheme is aninterface that is implemented by all grad-
ing scheme classes, except for GradingSchemeHandler, allowing for a modular use of the
grading schemes. This class has the following method:

e compute(score: Score): string
Every grading scheme should convert a Score object to some string.

@GREAT GRADERS
20

Great Graders Software Requirements Document

2.7.2.3.2 GradingSchemeHandler The GradingSchemeHandler class has the function of
transforming a string input to the corresponding grading scheme class.
This class has the following methods:

e convertToGradingScheme(gradingScheme: string): Class
Converts a string input to the corresponding class.

e convertToAssociatedGradingScheme(gradingScheme: string): Class
Given a string input that corresponds to the grading scheme for the final grade, returns
the corresponding partial grade grading scheme.

2.7.2.3.3 ZeroToTeninteger The ZeroToTenlnteger class is a class that converts a score
input to an integer between 0 and 10.
This class has the following method:

e compute(score: Score): string
Converts a score to an integer grade between O and 10.

2.7.2.3.4 ZeroToTenlDecimal TheZeroToTen1Decimalclassisaclassthatconvertsascore
input to a number between 0 and 10 accurate to one decimal.
This class has the following method:

e compute(score: Score): string
Converts a score to a number grade between 0 and 10 accurate to one decimal.

2.7.2.3.5 ZeroToTen2Decimal The ZeroToTen2Decimalclassisaclassthatconvertsascore
input to a number between 1 and 10 accurate to two decimals.
This class has the following method:

e compute(score: Score): string
Converts a score to a number grade between 0 and 10 accurate to two decimals.

2.7.2.3.6 ZeroToTenHalf The ZeroToTenHalf class is a class that converts a score input to
anumber between 0 and 10, rounded to the nearest half.
This class has the following method:

e compute(score: Score): string
Converts a score to a number grade between 0 and 10, rounded to the nearest half.

2.7.2.3.7 ZeroToTenHalfWithout55 The ZeroToTenHalfWithout55 classis aclassthat con-
verts a score input to a number between 0 and 10, rounded to the nearest half, with the ex-
clusion of 5.5.

This class has the following method:

e compute(score: Score): string
Converts a score to an number grade between 0 and 10, rounded to the nearest half,
with the exclusion of 5.5.

2.7.2.3.8 LetterUK The LetterUK class is a class that converts a score input to a letter
following the UK scheme.
This class has the following method:

e compute(score: Score): string
Converts a score to a letter grade following the UK scheme.

@GREAT GRADERS
21

Great Graders Software Requirements Document

2.7.2.3.9 LetterUS The LetterUS class is a class that converts a score input to a letter fol-
lowing the US scheme.
This class has the following methods:

e compute(score: Score): string
Converts a score to a letter grade following the US scheme.

2.7.2.3.10 Percentage The Percentageclassisaclassthatconvertsascoreinputtoanum-
ber between 0 and 100 accurate to two decimals.
This class has the following methods:

e compute(score: Score): string
Converts a score to a number grade between 0 and 100 accurate to two decimals.

2.7.2.3.11 CustomGradingScheme The CustomGradingScheme class can be used to de-
fine custom grading schemes on certain boundary conditions. It will convert a score into a
string using these boundary conditions.

This class has the following methods:

e compute(score: Score): string
Converts a score to a grade based on the boundary conditions.

2.7.2.4 DataTypes

2.7.24.1 Score TheScore classisadatatype thatisused internally for passing typed val-
ues between classes.
An instance of this class has the following attributes:

e type: the type of the score, either ‘points’ or ‘excused’

¢ value: the value of the score, as a fraction between O and 1, inclusive.

2.7.2.5 Miscellaneous

2.7.2.5.1 GradeCalculationLogicEndpoint The GradeCalculationLogicEndpoint class is a
singleton that provides access to the overarching functionality in the Grade Calculation logic
module. It is essentially a facade for the Grade Calculation logic module.

This class has the following methods:

e buildTree(json: Hash): Node
This method is for building atree from a Hash, it directly references to TreeBuilder.buildLevel.

e assessmentCheck(assessments: Hash, tree: Node): Hash
This method checks if all assessments in the given tree are also found in assessments with
the same details. It returns a hash with found inconsistencies.

e mapldName(tree: Node): Hash
This method iterates through the tree, and returns a hash, mapping all nodelds to node-
Names for all CalculationNodes.

¢ gradeCalculation(tree: Node, markRequirements: Hash, gradingScheme: string, student-
Marks: Hash): Hash
This method calculates the partial and final grades of a student, using the marks of
the student in studentMarks, the final score structure tree, the grading scheme grad-
ingScheme, and the mark requirements markRequirements.

@GREAT GRADERS
22

Great Graders Software Requirements Document

2.7.2.5.2 PrecheckRequirements The PrecheckRequirements class has a single function:
to check if a set of requirements is met by a set of marks.
This class has the following methods:

e checkRequirement(requirements: Hash, marks: Hash): Boolean
This method checks if all marks in marks meet their associated requirements specified
in requirements, returning true if they do, returning false if any mark does not meet its
requirement.

2.7.2.5.3 DisplayMarkEndpoint The DisplayMarkEndpoint class has a single function: to
convert a mark for display to the user according to the grading scheme.
This class has the following method:

e convertMark(gradingScheme: String, mark: String, assessmentinfo: Hash, assessmentld: String):
String
This method converts the mark according to the grading scheme. If the mark is ‘com-
plete, 'incomplete) or 'excused), then it returns the achieved mark, otherwise it alters
the mark.

2.7.2.5.4 AssessmentCheck The AssessmentCheck class has a single function: it checks
if a given assessments hash is valid. This class has the following method:

¢ validateAssessments(assessments: Hash): void
This method validates if a given assessments hash is valid. All keys should be assess-
ment IDs, and the values should be hashes containing information about the associated
assessment. It checks those values as well, and throws an error if any information is
incorrect.

2.7.2.5.5 MarkAdjustment The MarkAdjustment class has asingle function: to adjust the
value of a mark. This class has the following method:

e calculateMark(value: String, assessmentinfo: Hash): Rational or String
This method converts an original value for a mark into an adjusted value that accounts
for factors such as no shows and mark adjustment.

@GREAT GRADERS
23

Great Graders Software Requirements Document

Assessment

+ course: Course

+ canvasAssignmentld: Integer

+assesssmentType:String

0.0
+ name: String
+markType: String Baselmporter
+ maxScore:String - canvasApi: CanvasApi
1 Course
+ markAdjustment: Boolean + synchronizeObjects(canvasObjects: Array, databaseObjects: Array, field: Symbol) +canvasld: Integer
+ adjustmentBase: Float # createNewObject(canvasObject: Hash, course: Course) CanvasApi + String

- courseld: Integer
+ adjustmentMulipler: Float # updateObject(canvasObject: Hash, databaseObject: Record) + scoreStructure: JSON

recordClass: Class +getCourseStudents(): Array
+ muted: Boolean - + draftScoreStructure: JSON
T H ---->{ + getAssignments(): Array
+ published: Boolean extends H ' H + scoreDescription: String
: : extends : + getSubmissions(assignmentld: Integer): Array
+ attemptNumber: Integer Assessmentimporter H Studentimporter use + cregledAt: Time
: : +getPermissions(): Hash
+ dueDate: Time <+ ~Use---+-[-+ import(): void u: +import):ivoid feeeees 3 A A + updatedAtTime
se : :
+minimumRequirement: String : + assessmentsHash(): Hash
H H : Us
 >+createdAt: Time | i o Markimporter T 1
1 H ;
+ updatedAt: Time H R R ELEILELLN . - canvasApi: CanvasApi
- - | on
+import(): void Student
+ assessmentHash(): Hash Databaselmporter
+course: Course
+ saveToD: Array. toDestroy: Array. toC void
I +canvasld: Integer
GradeCalculationLogicEndpoint A A [N
o o H +sisld: String
+ buildTree(json:Hash) fs ?e
+ createdAt: Time
+assessmentCheck(assessments: Hash, tree: Node) GradeCalculator CsvMarkimporter o
o + updatedAt:Time
+mapldName(tree: Node) < Use oo +caloulate(course: Course) +import(csv: Table, void [T .
+ gradeCalculation(tree: Node, Hash, H T +marksHash(): Hash
String, Hash) : i 1 1
use (S . .
N
Grade GradeDefinition Mark
+ gradeDefinition: GradeDefinition + course: Course + assessment: Assessment
CsvExporter + student: Student + gradeld: String + student: Student
+exporticourse: Course):void | Use--3 + grade: String + name: String +mark: String
tedAt: Ti
+ createc ime + muted: Boolean + score: String <
n
datedALTi
+ updatedAt.Time + published: Boolean + createdAt: Time
+ passed: Boolean + createdAt: Time + updatedAt:Time
n Q on + updatedAt:Time + logicMark(): String
L A, - +updateScore(assessment: Assessment): void
To "

Figure 2.3: UML Back-end Class diagram

Sections 2.7.2.6 to 2.7.2.9 refer to the class diagram for the general back-end of Grade Calcu-
lation found in Figure 2.3.

2.7.2.6 Database models

2.7.2.6.1 Course Course is the class that corresponds to the database object. A course
represents to a single Canvas course and stores course-wide attributes. An instance of this
class has the following attributes:

e canvasld: an integer that defines the ID of this course in Canvas
e gradingScheme: a string that defines the grading scheme used in this course
e scoreStructure: a JSON structure that defines the score structure for this course

e draftScoreStructure: a JSON structure that defines the draft score structure for this
course which corresponds to the saving of progress by a teacher.

o scoreDescription: a string that defines the score description shown to the student for
this course

o createdAt: the time at which the course was initially created in Grade Calculation

@GREAT GRADERS
24

Great Graders Software Requirements Document

updatedAt: the time at which one of the course’s attributes was last changed

This class has the following methods:

assessmentsHash(): Hash

This method returns a hash of assessments as input into the Grade Calculation logic
endpoint. For each assessment, the key will be the assessments’s ID and the value will
be the value of the assessment’s assessmentHash method.

2.7.2.6.2 Assessment Assessment is the class that corresponds to the database object.
An assessment corresponds to either a single Canvas assignment or to an assessment created
by a teacher. An instance of this class has the following attributes:

course: a reference to the course that this assessment belongs to

canvasAssignmentld: an integer that defines the ID of this assignment in Canvas if the
assessmentType is "canvas"

assessmentType: a string that defines the type of this assessment, which is either "can-
vas" or "import", which corresponds to a Canvas assignment or a teacher-created as-
sessment respectively

name: a string that defines the name of the assessment

markType: astring that defines the mark type of the assessment, which is either "points",
"percentage", or "complete_incomplete”.

maxScore: a string that is either "complete" for "complete_incomplete" assessments or
a numeric float for all other mark types.

markAdjustment: a boolean that defines whether mark adjustment is enabled for all
marks of this assessment.

adjustmentBase: a float that defines the mark adjustment base that is either null if the
markAdjustment is false or a positive number if it is true

adjustmentMultiplier: a float that defines the mark adjustment multiplier that is either
null if the markAdjustment is false or a positive number if it is true

muted: a boolean that defines whether this assessment’s marks are muted for the stu-
dent. For Canvas assignments, this value is taken from Canvas and cannot be changed
by the teacher.

published: a boolean that defines whether this assessment is published for the student.
For Canvas assignments, this value is taken from Canvas and cannot be changed by the
teacher.

attemptNumber: an integer that defines which attempt this is. The value will be null if
this is not part of a multiple attempt or if it is the first attempt, while it will be 1 if this is
the second attempt, 2 if it is the third attempt, etc.

dueDate: the time at which this assessment is due. For Canvas assignments, this value
is taken from Canvas and cannot be changed by the teacher.

minimumRequirement: a string that defines the minimum requirement for this assess-

"o (] no»

ment, which is either null, a number, or "complete", incomplete", "no_show", "excused".
createdAt: the time at which the assessment was initially created in Grade Calculation

updatedAt: the time at which one of the assessment’s attributes was last changed

This class has the following methods:

@GREAT GRADERS
25

Great Graders Software Requirements Document

e assessmentHash(): Hash
This method returns a hash of the values that should be passed as input into the Grade
Calculation logic module. The keys are defined by the Grade Calculation logic module

and are "grading_type", "minimum_requirement", "mark_adjustment", "adjustment_base",

non non

"adjustment_multiplier", "max", "repeated_attempt" and "repeated_attempt_assessment_id".

2.7.2.6.3 GradeDefinition GradeDefinition is the class that corresponds to the database
object. A grade definition corresponds to either the final grade or a partial grade defined in
the score structure. An instance of this class has the following attributes:

e course: areference to the course that this grade definition belongs to

e gradeld: a string that corresponds with the "node_id" of the partial grade. It can also be
either "final" for the final grade or "mandatory" for the mandatory assessments grade.

e name: astring that defines the name of this grade definition, which is either the "node_name",

"Final Grade", or "Mandatory Assessments"

e muted: a boolean that defines whether this definition’s grades are muted for the stu-
dent

¢ published: a boolean that defines whether this grade definition is published for the stu-
dent

o createdAt: the time at which the grade definition was initially created in Grade Calcu-
lation

e updatedAt: the time at which one of the grade definition’s attributes was last changed

2.7.2.6.4 Student Studentisthe classthat corresponds to the database object. A student
corresponds to either a single Canvas user with the role student. An instance of this class has
the following attributes:

e course: areference to the course that this student belongs to

e canvasld: an integer that defines the ID of this user in Canvas

e sisld: a string that defines the SIS ID of this student, as returned by Canvas

e createdAt: the time at which the student was initially created in Grade Calculation

e updatedAt: the time at which one of the student’s attributes was last changed
This class has the following methods:

e marksHash(): Hash
This method returns a hash of the assessment ID’s to the marks of this student, as de-
fined by the Grade Calculation logic module.

2.7.2.6.5 Mark Markisthe class that corresponds to the database object. A mark is the
result of a single assessment for a single student. An instance of this class has the following
attributes:

e assessment: a reference to the assessment that this mark is for
¢ student: areference to the student that this mark is for
e mark: a string that defines the value of such mark

e score: a string that defines the value of such mark after applying a grading scheme.

@GREAT GRADERS
26

Great Graders Software Requirements Document

e createdAt: the time at which the mark was created

e updatedAt: the time at which one of the mark’s attributes was last changed
This class has the following methods:

e logicMark(): String

This method returns the score for input into the Grade Calculation logic module. It will

" "o

either be "excused", "complete"incomplete”, "no_show" or be a number between 0 and
the assessment’s maxScore.

e updateScore(assessment:Assessment)
This method updates the score value whenever the mark value or the assessment’s
markAdjustment is changed.

2.7.2.6.6 Grade Grade is the class that corresponds to the database object. A grade is
the output of the Grade Calculation logic module of a single grade for a single student. An
instance of this class has the following attributes:

¢ gradeDefinition: a reference to the grade definition that this grade is for
e student: areference to the student that this grade is for

e grade: a string that defines the returned value of the grade, according to the grading
scheme

e passed: a boolean that defines whether this grade is seen as a pass, which is only set for
the final grade

e createdAt: the time at which the grade was created

¢ updatedAt: the time at which one of the grade’s attributes was last changed

2.7.2.7 Database object updaters

2.7.2.7.1 Databaselmporter Databaselmporterisa utility classthatis used for saving changes
to the database in a uniform way. This class has the following static method:

e saveToDatabase(toAdd: Array, toDestroy: Array, toChange: Array): void
This method will start a database transaction and then insert all records in toAdd to the
database, delete all records in toDestroy from the database and update all records in
toChange in the database. Finally, it will end the transaction and commit all changes to
the database.

2.7.2.7.2 Baselmporter Baselmporter is an abstract class that can be extended from to
synchronize Canvas objects to Grade Calculation database objects. An instance of this class
has the following attributes:

e canvasApi: a reference to the Canvas API that can be used by the importer, which also
contains a reference to the current course

This class has the following methods:

e synchronizeObjects(canvasObjects: Array, databaseObjects: Array, field: Symbol): void
This method will use the abstract methods and find the toAdd, toDestroy and toChange
parameters for the Databaselmporter using the field argument.

This class has the following abstract methods:

@GREAT GRADERS
27

Great Graders Software Requirements Document

e createNewObject(canvasObject: Hash, course: Course): Record
This method will be called when a new database record needs to be created. The can-
vasObject and course can be used to construct the database record.

e updateObject(canvasObject: Hash, databaseObject: Record): Record
This method will be called when a database record could be updated. The databaseOb-
ject should be updated based on the information found in canvasObject and returned.

e recordClass(): Class
This method should return the class of the database record that is used in this importer,
e.g. Student for Studentimporter.

2.7.2.7.3 Assessmentlmporter Assessmentimporter is a class that is used to import Can-
vas assessments into the Grade Calculation database. This class has the following methods:

e import(): void
This method will retrieve all Canvas and database assessments and then use synchro-
nizeObjects of its parent class to synchronize the two.

2.7.2.7.4 Studentlmporter Studentimporter isaclass thatisused toimport Canvas users
with the student role into the Grade Calculation database. This class has the following meth-
ods:

e import(): void
This method will retrieve all Canvas and database students and then use synchronizeOb-
jects of its parent class to synchronize the two.

2.7.2.7.5 Marklmporter Marklmporterisaclassthatisusedtoimport Canvas marksinto
the Grade Calculation database. An instance of this class has the following attributes:

e canvasApi: a reference to the Canvas API that can be used by the importer to get all
students which also contains a reference to the current course

This class has the following methods:

e import(): void
This method will retrieve all Canvas and database marks and then construct the differ-
ence and pass it to Databaselmporter’s saveToDatabase.

2.7.2.7.6 GradeCalculator GradeCalculatorisaclassthatisused to calculate all grades of
a course and save them to the database. This class has the following methods:

e calculate(course: Course): void
This method will call the Grade Calculation logic module’s endpoint to calculate the
grades of every student and then save them to the database.

2.7.2.8 CSV import and export

2.7.2.8.1 CsvMarklmporter Marklmporter is aclass that is used to import marks into the
Grade Calculation database from a CSV file. This class has the following methods:

e import(csv: Table, assessment: Assessment): void
This method will take in a parsed CSV file and an assessment and update or create the

marks for every student in the file.
@GREAT GRADERS
28

Great Graders Software Requirements Document

2.7.2.8.2 CsvExporter CsvExporter isaclassthatis used to export grades into a CSV file.
This class has the following methods:

e export(course: Course): String
This method will export the grades of all students of a course to a CSV string.

2.7.2.9 Miscellaneous

2.7.2.9.1 CanvasApi CanvasApiis a utility class that is used for connecting to the Canvas
API. Aninstance of this class has the following attributes:

e courseld: an integer that defines the current course ID such that the Canvas APl is al-
ways called for the correct course

This class has the following methods:

e getCourseStudents(): Array
This method will call the Canvas API "List users in course" endpoint with the enrollment
type filtered to student and return all pages in a single array.

e getAssignments(): Array
This method will call the Canvas API "List assignments" endpoint and return all pages
in asingle array.

e getSubmissions(assignmentld: Integer): Array
This method will call the Canvas API “List assignment submissions" endpoint and return
all pages in a single array.

e getPermissions(): Hash
This method will call the Canvas APl "Permissions" endpoint and return the value as a
hash.

2.7.3 Data Model

The data model for Grade Calculation is represented as an Entity Relationship diagram pre-
sented below in Figure 2.4. It describes which data is being stored and how that data is struc-
tured in the databases required by Grade Calculation. The databases provided by Drieam
are not components of Grade Calculation, therefore they are not included in this diagram.
Following the figure, a description of each entities in the data model with a corresponding ex-
planation of their attributes is provided.

@GREAT GRADERS
29

Great Graders

Software Requirements Document

2.7.3.1 Database Diagram

Course

id
canvas_id
grading_scheme

score_structure

Attempt of

[

Assessments

id

assessment_type
canvas_assignment_id
name

mark_type

max_score
mark_adjustment
adjustment_base

adjustment_multiplier

Gets graded

Marks

created_at

updated_at BO—

Receives

Grades

grade

created_at

muted
draft_score_structure Has)
published
score_description
attempt_number
created_at
due_date
updated_at pO—— . X
minimum_requirement
created_at
updated_at
O
Grade Definitions Enrolls
id
name Students
muted ——o<id
published canvas_id
created_at sis_id
updated_at created_at
updated_at
Legend @@
One [,
Many <
One (and only one)
éero or one o L
Zero or many —*
y

2.7.3.1.1 Course

Figure 2.4: ER Data model

updated_at

A course entity represents a course that is provided in the educational institute. Courses

30

@GREAT GRADERS

Great Graders Software Requirements Document

have the following properties:

id: a sequential number which is unique per course, representing the id of the course
on Grade Calculation

canvas_id: anumber unique per course, representing the id of the course on Canvas.

grading_scheme: a string, representing the grading scheme of choice to be applied in
all scores within that course.

score_structure: a JSON object, representing the final score calculation structure.

draft_score_structure: aJSON array, representing a final score calculation struc-
ture that has not yet been finalized.

score_description: Astringthatis a textual description of the score structure

created_at: atime stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the course was created.

updated_at: a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the course was implemented.

2.7.3.1.2 Assessment
An assessment represents an exam, an assignment, a quiz, etc. within a course. Assessments
have the following properties:

id: a sequential number which is unique per assessment, representing the id of the
assessment on Grade Calculation

course_id: aninteger, that will link an assessment to a specific course

assessment_type: a string, whose value is either “canvas” or “import". It represents
the type of assessment depending on from which source marks will be imported.

canvas_assignment_id: anumber, unique per assessment, representing the id of the
assignment on Canvas.

name: a string, representing the name this assessment is assigned, either from Canvas
or it is created when creating an imported assessment manually.

"o«

mark_type: a string, whose value is either “points", “complete_incomplete" or “per-
centage". It represents the type of marks the assessment expects.

max_score: will be “complete" if mark_type is “complete_incomplete", otherwise it will
contain a number, representing the maximum score that can be obtained for the as-
sessment. This will be equal to the upper-bound of the mark if grade_type is equal to
“points" or “percentage".

mark_adjustment: a boolean which is set to be true when all marks for this assess-
ment need to be adjusted

adjustment_base: a positive number representing the amount of points that are al-
ways added to a student’s mark in the mark adjustment process

adjustment_multiplier: apositive number which represents the number by which
the mark of the student will be multiplied in the mark adjustment process.

muted: A boolean which is set to be true when all marks for this assessment are not
visible to students, or is set to be false otherwise.

published: A boolean which is set to be true when the assessment itself and its asso-
ciated marks are not visible to students, or is set to be false otherwise.

@GREAT GRADERS
31

Great Graders Software Requirements Document

e attempt_assessment_id: aunique number,that will link an assessment that is an zth
(x € NT) attempt of the original assessment.

e attempt_number: aninteger representing the x (x € NT) in the zth attempt.

e due_date: is a timestamp without time zone, representing the last moment at which
an assessment can be submitted.

e minimum_requirement: A string, representing the minimum score needed to avoid
failing the course.

e created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the assessment was created.

e updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the assessment was implemented.

2.7.3.1.3 Marks
A mark represents the result a student is given for an assessment.

e id: a sequential number which is unique per mark, representing the id of the mark on
Grade Calculation

e assessment_id: aninteger, that will link a mark to a specific assessment.

e student_id: aninteger, that will link a mark to a specific student.

"ot "o«

e mark: can be empty, contain a number or contain one of “complete”, “incomplete”, “no_show",
or “excused" representing the result the student obtained for that assessment.

"o«

e score: can be empty, contain a number or contain one of “complete", “incomplete”,
“no_show", or “excused" representing the result the student obtained for that assess-
ment as a display value, which can be mark adjusted based on the assessment informa-
tion

e created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the mark was created.

e updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the mark was implemented.

2.7.3.1.4 Grades

e id: asequential number which is unique per grade, representing the id of the grade on
Grade Calculation

e student_id: aninteger, that will link a grade to a specific student.

e grade_definition_id aninteger, linking a grade to the corresponding grade defini-
tion.

e grade: astring representing the actual grade the student has obtained

e passed: aboolean representing whether this grade is a pass, only set if this grade is for
the final grade or for the mandatory assessments

e created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the grade was created.

e updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the grade was implemented.

@GREAT GRADERS
32

Great Graders Software Requirements Document

2.7.3.1.5 Students

e id: asequential number which is unique per student, representing the id of the student
on Grade Calculation

e canvas_id: a number, unique per student within a course, representing the ID of the
student on Canvas.

e course_id: aninteger, that will link a student to a specific course.

e sis_id: A unique string within a course, representing the student ID used in the Stu-
dent Information System.

e created_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the student profile was created.

e updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the student profile was implemented.

2.7.3.1.6 Grade Definitions

e id: asequential number which is unique per grade definition, representing the id of the
grade definition on Grade Calculation

e course_id: aninteger, that will link a grade definition to a specific course.

e grade_id: aninteger, which is unique per node in the final score structure per course,
representing the id of the grade used in Grade Calculation.

e name: a string representing how the grade definition is addressed to. The name will be
inherited from the node_name.

e muted: Abooleanwhichis set to be true when all marks for this grade definition are not
visible to students, or is set to be false otherwise.

e published: A boolean which is set to be true when the grade definition itself and its
associated grades are not visible to students, or is set to be false otherwise.

e created_at:isatimestamp without a time zone, created automatically by Ruby sends
the time the grade definition was created.

e updated_at: is a time stamp without a time zone, created automatically by Ruby on
Rails, which represents the time the last change in the grade definition was implemented.

2.7.3.2 JSON Structure

A specification was created in order to allow for consistent storing and retrieving of score
structures as JSON obijects.

This is a recursive structure that consists of a root node specification, possibly with nested
children nodes.

2.7.3.2.1 Calculation Node A calculation node represents a set of assessments with an
associated calculation.
A calculation node requires the following fields:

e node_type: ='calculation’, specifies that this node is a calculation node

¢ node_name: the string name of this node, used for display purposes

@GREAT GRADERS
33

Great Graders Software Requirements Document

node_id: the unique id of this node, used for keeping track of partial scores

calculation_type: a string, specifying exactly what calculation is associated with this
node

args: an object of arguments to be passed to the calculation

children: an array of children node specifications, allowing for the recursive tree struc-
ture

requirement: the minimum requirement on this partial score, may be nil

2.7.3.2.2 MarkNode A marknoderepresents asingle assessment.
A mark node requires the following fields:

node_type: ='mark’, specifies that this node is a mark node
assessment_id: specifies what assessment this node represents

grading_type: specifies what type of grade the assessment is, either 'points’ or 'percent-
age’

max: specifies the maximum mark that can be obtained for the associated assessment

2.7.3.2.3 ConstantNode A constant node represents a constant fraction, such as 5/10.
A constant node requires the following fields:

node_type: ='constant’, specifies that this node is a constant node
grading_type: specifies whether this constant is a percentage or points type
value: the value of the constant

max: the maximum of the constant. This is needed because a value of 5 out of 10 is
different from 5 out of 20.

@GREAT GRADERS
34

Great Graders Software Requirements Document

2.7.4 Sequence Diagrams
2.7.4.1 Student Interface

2.7.4.1.1 Student opens Grade Calculation Student Interface

Students can open Grade Calculation. To do this the student navigates in Canvas to the Grade
Calculation tab. After selecting this tab, the student user is able to see the grades view if the
database can be reached, otherwise the student receives an error page.

Goal: Student opens the Grade Calculation Student Interface in Canvas.
Precondition:

The actor is enrolled as a Student for the specific course.

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

A final score structure has been created for computing the final score.
A grading scheme has been selected for computing the final grade.

Postcondition: All published assessments and assessment sets included in the final score
structure are displayed and for those which are not muted, the mark, or grade for this spe-
cific student are displayed.

Summary: The actor can view their own marks, partial grades, and final grade in the Grade
Calculation Student Interface in Canvas.

Priority: Must have

Student opens Grade Calculation Student Interface

‘ Student User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface I | Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module ‘ ‘ Grade Calculation Database

[alt_Jipatabase can be reached]

—

|
retum data

_______ retumn Student Interface ________

[Database cannot be reached] w

|. S kL ——
T :

I 1 T
Student User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface | | Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module ‘ ‘ Grade Calculation Database
www.websequencediagrams.com

Figure 2.5: Student opens Grade Calculation Student Interface

@GREAT GRADERS
35

Great Graders Software Requirements Document

2.7.4.1.2 Student exports marks and grades using a CSV file

Students can export their marks, partial grades, and final grades in Grade Calculation. To do
this they will need to navigate in Canvas to the Grade Calculation tab. If the database can be
reached, the student user is able to select the export option, otherwise the student receives
an error page.

Goal: Student exports their marks, partial grades, and the final grade using a CSV file.
Precondition:

The actor is enrolled as a Student in the specific course.

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: The marks, partial grades, and final grade of the actor are stored in a CSV file.
Summary: The actor can export their own marks, partial grades, and final grade such that
they are saved ina CSV file.

Priority: Won't have

Student exports marks and grades to CSV

‘ Student User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface I | Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module ‘ ‘ Grade Calculation Database

start launch N
4
retrieve data
I
retum data
_______ retum Student Interface________
PRS2 —
soloct export
il
P retum response
ctectbements to export N
>
| [l sona st N
[alt J[Database can bs reached]
refriove data N
T
__________ eumdata N

retum CSV

o mewmemor
¢ i

‘ Student User H Canvas H Grade Calculation Interface || Grade Calculation Back-end H Grade Calculation Logic module H Grade Calculation Database |

Wi websequencediagrams.com

Figure 2.6: Student exports marks and grades to CSV

@GREAT GRADERS
36

Great Graders Software Requirements Document

2.7.4.2 Teacher interface

2.7.4.2.1 Teacher opens Grade Calculation Teacher Interface

Teachers can open Grade Calculation. To do this they will need to navigate to the Grade Cal-
culationtabin Canvas. If the database is accessible, the teacher user is able to see the Teacher
Interface, otherwise the teacher receives an error page.

Goal: Teacher opens the Grade Calculation Teacher Interface in Canvas.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: If afinal score structure exists, it is displayed, otherwise an empty score struc-
ture is displayed.

Summary: The actor requests the page of Grade Calculation. The page is displayed in Teacher
interface, which contains all functionality of the plugin.

Priority: Must have

Teacher opens Grade Calculation Teacher Interface

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch N

retrieve data N
4

7 retum data

retum Teacher Intertace

[Database cannot be reached]

<4
¢
IR 9‘};",’1'!'}3‘9!9 ,,,,,,,,,,,,, JT

start launch »

retrieve data z
retum emor

) T
display emor page
. E— e JT

I I I
Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Lagic module ‘ | Grade Calculation Database

Figure 2.7: Teacher opens Grade Calculation Teacher Interface

@GREAT GRADERS
37

Great Graders Software Requirements Document

2.7.4.2.2 Teacher defines or edits a grading scheme
Teachers defines a new grading scheme or edits an existing one in Grade Calculation. Todo so,
they need to select the create grading scheme option and build the desired grading scheme.

Goal: Teacher defines a new grading scheme or edits an existing one.
Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

The database is accessible.

Postcondition: The grading scheme is saved into the database.
Summary: The Teacher defines the grading scheme that is used for the calculation of the final
grade.

Priority: Won't have

Teacher defines or edits grading scheme

‘ Teacher User ‘ ‘ Canvas | ‘ Grade Calculation Interface ‘ | Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module | | Grade Calculation Database

start launch N
refrieve data N
4
M- A e
¢ ratumn teacher interface
< display interface
M [
select creale grading scheme option »
send request
refrieve data N
4
*._._.__._._._._._.____._._._._'€'_“!”.§ oo e e U
g ---etum oreate grading scheme view

Toop JTermination: Teacner ciicks validate]
op J[Termination: 1"-::rm clicks save]

odit J;ramng scheme

R __“i_s_p_“iJ grading scheme __________

J

send grading scheme

store graging seheme graft

[

(S retun response: ‘

" return response

|
validale grading scheme

send grading scheme

check grading scheme

A 4

E[ﬂolnﬂ grading scheme]
*._._._._.._PI‘?EEP?E’_‘E"_
store grading scheme »
PR retumresponse
-] retum response _________._
< retumresponse ____________
b -
[incorrect grading sehemaj
. chockfoled ___________|
- retum emor
L E— e — . ‘

I 1 1 1
Teacher User ‘ ‘ Canvas | ‘ Grade Calculation Interface ‘ | Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module | | Grade Calculation Database |

WWW WeDSEqUEncediagrams com

Figure 2.8: Teacher defines or edits grading scheme

@GREAT GRADERS
38

Great Graders Software Requirements Document

2.7.4.2.3 Teacher defines or edits final score structure and selects a grading scheme
Teachers defines a new final score structure or edits an existing one. Moreover the teacher
must select a grading scheme, since a final score structure cannot be validated without it.
This is done using the “Grading Structure" view of the Teacher Interface to build the desired
structure and select the desired grading scheme.

Goal: Teacher defines a new final score structure or edits an existing one and selects a grad-
ing scheme. All of which will be used to determine the final grade.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

All assessments are defined.

The database is accessible.

Postcondition: The final score structure and selected grading scheme are saved in the database
Summary: The final score structure and grading scheme are defined by the teacher.

Priority: Must have

Teacher defines or edits final score structure and selects grading scheme

‘ Teacher User ‘ | Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module | | Grade Calculation Database

1
start launch
retrieve dala N
T ¥
7 T
e retum Teacher Interface _
S S‘E'FE“,E)‘J!‘?FPE? ,,,,,,,,,,,,,,
par
Ioo% [Tormination: Teacher clicks valldate]
loop J[Termination: Teacher clicks save]
edit structure N
T »
,,,,,,,,,,,, display stucture |
* F
save draft structure N
i send ara structure
store drafl structure
— g
¢ retum response____
¢ oo Meumresponse 1

oop J[Termination: Teachar clicks validate]
select grading scheme
send grading scheme.
store grading scheme »
______ retum ‘s&o_n_se
4 retum response
‘,,,,,,,,,,,,,E‘“[‘[?}P?’!E% ,,,,,,,,,,,,,, :
} 1
vaiidate structure
send structure
aneck structure
alt _JCorrect final score structure]
*,,,,,,,,,,,PI‘?Q’S passed |
store structure)
T 4l
- S (L
e relum 18sponse____ oo
retum response
[incorrect final score structure]
N — L L I—
/. retum error
: d\il‘xléz_em page

T I
‘ Teacher User ‘ | Canvas ‘ ’ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end ‘ \ Grade Calculation Logic module | | Grade Calculation Database

Www websequencediagrams com

Figure 2.9: Teacher defines or edits final score structure and selects grading scheme

@GREAT GRADERS
39

Great Graders Software Requirements Document

2.7.4.2.4 Teacher views audit logs
Teachers views audit logs in Grade Calculation which displays the changes that occurred within
the plugin.

Goal: Teacher views audit logs.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: The final score structure that the actor wishes to edit is modified.
Summary: The actor is able to view the audit logs of the plugin. This way the actor can inves-
tigate potential problems.

Priority: Should have

Teacher views audit logs

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch N
retrieve data N
T 14
T —— T
L retum Teacher Interface
____________ display Interface___________ __L,
[alt [Database can be reached]
request audit logs »
gl
send request
retrieve data N
T 4
‘,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,’?!U,” o e
4 return audit logs
¢
¢ ms,Flay audit logs
[F17="7 [Database unTeI be reached]
request audit logs s
send request
retrieve ata | L-————-- N
4 retum ermor
4 -
” display eror page I
I [I

I 1 1
Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database |

www.websequencediagrams.com

Figure 2.10: Teacher views audit logs

@GREAT GRADERS
40

Great Graders Software Requirements Document

2.7.4.2.5 Teacher filters audit logs
Teachers wants to view the audit logs to which a specific filter applies.

Goal: Teacher filters audit logs.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.

The actor has navigated to the specific course.

The actor has navigated to the audit logs view.

The specific course has Grade Calculation enabled.

Postcondition: The audit logs to which the filter applies are displayed.
Summary: The actor is able to view the filtered audit logs of the plugin. This way the actor
can investigate potential problems.

Priority: Won't have

Teacher filters audit logs

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

lapply filter)
4l
‘ send request >
[alt™_Jivaiid fiiter entored]
mquns‘l data »
retum cata . 1
- e Lol o
pdate display______________|
*,,,,,,,,,,,!?‘9'}1?["3‘ ,,,,,,,,,,,,,
,,,,,,,,,, dispayerorpage __________ T
f a: i

Teacher User } ‘ Canvas | l Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | l Grade Calculation Logic module ‘ | Grade Calculation Database I

www.websequencediagrams.com

Figure 2.11: Teacher views audit logs

@GREAT GRADERS
41

Great Graders Software Requirements Document

2.7.4.2.6 Teacher computes the final grade

Teachers wants to compute the final grade using the final score structure and grading scheme
defined in Grade Calculation. To do this, the teacher must manually select the option to com-
pute final grades.

Goal: Teacher computes the final grade for each Student.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged in Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

A final score structure has been created and saved.

A grading scheme has been selected.

The database is accessible.

Postcondition: The final grade for each student is computed and stored.

Summary: When the teacher desires to compute the final grade (e.g. the term ended), the
final grade must be computed. The defined final score structure is used to calculate the final
score, which is then converted to the final grade using the grading scheme.

Priority: Must have

@GREAT GRADERS
42

Great Graders Software Requirements Document

Teacher computes final grade

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

opon poge ‘
[¢ tummsporse
start launch
retrieve data N
T »
‘- L
<4 retum Teacher Interface
display Interface | r
request "Student Grages” view A
gl e
retrieve data Y
»
e — wumesta
4 retum "Student Grades” view
_dispiay J.H‘
select compute final grades
compute final grade
52 can be reached for the retrieval of data]
refrieve final score structure, grading scheme, and marks
retum cata - t
[[No errors ocourred In calculation]
calculate final grades »
-~ __fetumfinal grades '|T|
[Database can be feached for the storage of results] ‘
store results N
T »
relum response - -
store resuits
retum emor
[PR dsplayerspme ...
L Ty
calculate final grades »
ream o |
retum sor
. dspayemorpage ________
[Database cannot be reached for the retrieval of datal] - T
retrieve data
retum eror
T‘..,.........“.‘%T.“,!E['?'.E‘R’....,....._...T l

I 1 I
Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database
‘www websequencediagrams.com

Figure 2.12: Teacher computes final grade

GREAT GRADERS

43

Great Graders Software Requirements Document

2.7.4.2.7 Teacher mutes grade
Teachers wants hide a specific grade to the students. To do so the teacher has to select the
mute options of that specific grade.

Goal: Teacher mutes the grade.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

The specific grade is unmuted

Postcondition: A grade is muted.

Summary: The actor mutes a grade. This grade is no longer visible to the Students.
Priority: Should have

Teacher mutes grades

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch >
retrieve data)
T 4
O — T
A4 retum Teacher Interface
[display Interface_____________
request "Student Grades” view
>l send request)
i
retrieve data)
T »
L
¢ retum "Student Grades” view
- ,,'?'?E‘:‘L";’l\iqe,"f Grades™view
select mute specific grade N
'| send request N
T Ll
alt__J[Database can be reached for the update of data]
update data N
T 4
PR retum response _
4 return response
Al
A update display
""" [Database cannot be reached for the Update of dataj
update data | [-----=--,
*,,,,,,,,,,,!?“,‘!",?’!”J,,,,,,,,,,,,,
[N R — d _‘E"’.‘*ELET?'_E"’P_E_ ____________ T
I 1 1

Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database |
www.websequencediagrams.com

Figure 2.13: Teacher mutes grade

@GREAT GRADERS
44

Great Graders Software Requirements Document

2.7.4.2.8 Teacher unmutes grade
Teachers wants make a specific grade visible to students. To do so the teacher has to select
the unmute options of that specific grade.

Goal: Teacher unmutes the grade.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].
The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

The specific grade is muted

Postcondition: A grade is unmuted.

Summary: The actor unmutes a grade. This grade becomes visible for the Students.
Priority: Should have

Teacher unmutes grades

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch >
retrieve data)
T 4
O — T
A4 retum Teacher Interface
[display Interface_____________
request "Student Grades” view
>l send request)
i
retrieve data)
T »
L
¢ retum "Student Grades” view
- ,,'?'?E‘:‘L";’l\iqe,"f Grades™view
select unmute specific grade N
send request N
T Ll
alt__J[Database can be reached for the update of data]
update data N
T 4
PR retum response _
4 return response
Al
A update display
""" [Database cannot be reached for the Update of dataj
update data | [-----=--,
*,,,,,,,,,,,!?“,‘!",?’!”J,,,,,,,,,,,,,
[N R — d _‘E"’.‘*ELET?'_E"’P_E_ ____________ T
I 1 1

Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database |
www.websequencediagrams.com

Figure 2.14: Teacher unmutes grade

@GREAT GRADERS
45

Great Graders Software Requirements Document

2.7.4.2.9 Teacher filtersin the set of marks and grades
Teachers defines a filter condition such that only marks and grades that fulfil this condition
are shown to the Teacher.

Goal: Teacher can apply filters to the set of marks, partial grades, and final grades.
Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged in Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

The database is accessible.

Postcondition: Filtered items are returned to the actor, such that the actor can view them.
Summary: The actor applies filters to the items available. The filters get applied and the items
get returned to the actor.

Priority: Could have

Teacher filters in the set of marks and grades

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch Y
»
retrieve data N
T 4
e — oyt —
PR retum Tegcher Inlerface
PR display interface_____________
request "Student Grades” view }
| sons rouest N
L4
retrieve data N
T »
T ——
4 retum response
- display "Student Grades™ view________
lapply iter N
»
send request N
a
alt JVand filter entered]
requesl data »
T 4
* 7777777777777 retum data _
retum response
" updale display
[invalid fiiter entered)
rotum emor
L dsplayemorpage __________.
* ; + ‘

Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database |

Wi websaquencediagrams.com

Figure 2.15: Teacher filters in the set of marks and grades

@GREAT GRADERS
46

Great Graders Software Requirements Document

2.7.4.2.10 Teacher imports marks using a CSV

Teachers wants to import the marks for a specific assessment, to do so the teacher uploads a
CSV file containing the marks for this assessment. If marks have already been imported for
this assessment, uploading new marks for this assessment will updated the stored marks.

Goal: Teacher imports marks using a CSV file.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: The marks of the assessment are uploaded to the database.

Summary: The actor imports the marks of a single assessment for all students to the database.
Priority: Should have

Teacher imports marks using a CSV file

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch N
retrieve data N
‘ >
PR L
4 retum Teacher Interface
<
R display Interface_____________
request "Sludent Grades" view »
'I send request
retrieve data »
: >
P . 7.1 S
retum response.
v
- ooy Sl G vy
soict N
\
‘,,,,,, — ,,,,,!@‘,l‘m[’???ﬂ-‘i ,,,,,,,,,,,,,
select import CSY .
¢ o fewmresponse
select CSV file
»
alt
. rotum resporse
N\
_____________ sendresponse _____________]
A Jrrescher Sppraves A o]
approve mark Import N
‘ send request
[alt J[Database can be reached for the storage of marks]
stoe mars N
i »
P L— i
le retrn response
<
Btore marks | f--===== N
,‘,,,,,,,,,,,,’?Q‘[",?r!‘?(,,,,,,,,,,,,
‘_ _______ display eror page
fFaasiar dacs ot 3 Fark par]
cancel mark Import
send request
,,,,,,,,, fetum response_________.
‘,,,,,,,,,,,,,!Q‘“["‘,[“,‘P?U‘E ,,,,,,,,,,,,, 1
_____ 1 -
[CSV In the Incorrect format]
P retum efror
N
____________ d i?‘E!?E‘_”_I?‘?Q’_._._._._._._L l
T r

I 1 1
Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

Wi websaquencediagrams.com

Figure 2.16: Teacher imports marks using a CSV file

@GREAT GRADERS
47

Great Graders Software Requirements Document

2.7.4.2.11 Teacher imports a final score structure from another course

If the Teacher desires to re-use a final score structure from a different course, the teacher
must select the import score structure option and specify from which course the desired
structure to be imported from.

Goal: Teacher can import a final score structure from another course.

Precondition:

The actor is enrolled as a Teacher for the specific courses.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

The course the actor wishes to copy the final score structure from has a final score structure
defined.

Postcondition: The final score structure is accessible in the target course.

Summary: The actor imported the final score structure from another course into the current
course, and the final score structure is defined for such current course.

Priority: Could have

Teacher imports a final score structure from another course

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch. ».
»
retrieve data »
T b
Mo TRUTORE e eemmmnaas
< retum Teacher Intertace
,,,,,,,,,,,, display intertoce_
select import final score structure option »
I
e
select course N
»
L 1 I——

altJVaiid course id]

retrieve data N
T »
retum data

‘ mmemessesemssssssssssssssssssesss=s

alt__J[The target course has the same sel of assessments)

" retum final score structure

te displ
" sl depley

[The target course does not have the same sef of assessments]

r retum error

retum emor.

,,,,,,,,,,,, display erorpage |
< T

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database |

www.websequencediagrams.com

Figure 2.17: Teacher imports a final score structure from another course

@GREAT GRADERS
48

Great Graders Software Requirements Document

2.7.4.2.12 Teacher exports to CSV file
Teacher desires to export a set of marks, partial and/or final grades into a CSV file.

Goal: Teacher exports marks, partial grades and/or final grades with the corresponding SIS
IDs to a CSV file.

Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: The final grades, partial grades, and/or marks with the corresponding SIS IDs
are storedina CSV file.

Summary: The actor can export final grades, partial grades, and/or marks with the corre-
sponding SIS IDs such that they are saved in a CSV file.

Priority: Should have

Teacher exports to CSV file

‘ Teacher User ‘ Canvas H Grade Calculation Interface H Grade Calculation Back-end

‘ Grade Calculation Logic module ‘ ‘ Grade Calculation Database

[e]
»
g et respanse J_J

start launch

retrieve date N

display interface
[
request "Student Grades” view

select export option

retum response e
[
selosts export final grades. partial grades. and/or marks

[al [Database can be reached)

retrieve data

I
retum data

e

L 4

Tetum response

[Database canniot be reached]

‘.
I “'SP'E‘V o I I
1 1 T 1
Teacher User ‘ Canvas ‘ | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module ‘ ‘ Grade Calculation Database

www.websequencediagrams.com

Figure 2.18: Teacher exports to CSV file

@GREAT GRADERS
49

Great Graders Software Requirements Document

2.7.4.2.13 Teacher performs a test calculation

The teacher can perform a test calculation in Grade Calculation. To do this they need to navi-
gate to the Grade Calculation tab in Canvas. After this action they can enter test marks, and
trigger the calculation.

Goal: The Teacher can insert test marks to evaluate the outcome of a final score structure.
Precondition:

The actor is enrolled as a Teacher for the specific course.

The actor has the permissions specified in Section 2.4.1 of the URD [1].

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

The final score structure the actor wants to do a test calculation for is defined.

The database is accessible.

Postcondition: The actor obtains a final grade for the final score structure using the test
marks as input.

Summary: The actor can perform a test calculation using input marks and a predefined final
score structure and grading scheme.

Priority: Could have

Teacher performs a test calculation

‘ Teacher User ‘ ‘ Canvas | | Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | | Grade Calculation Logic module ‘ | Grade Calculation Database

start launch N
retrieve data N
T b
7 oL
< rotum teacher Intertace
<
PR display Intertece_____________
select test ealculation
s ki .l

alt_ JNormal calculation]

enter mark
I

[Toop JTermination: Teacher introduced all marks] —‘

T
trigger calculation N

send data N

perform calculation

retumn response

enter mark

oop rr_‘—nmlnaunn: T e —‘

trigger calculation
I
Lot d ,‘SJ-",‘E! o . R ———

-
I I

Teacher User ‘ ‘ Canvas | I Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | I Grade Calculation Logic module ‘ | Grade Calculation Database

Www.websequencediagrams.com

Figure 2.19: Teacher makes a test calculation

@GREAT GRADERS
50

Great Graders Software Requirements Document

2.7.4.3 Administrator interface

2.7.4.3.1 Administrator opens Grade Calculation Teacher Interface for any course
Administrators can open Grade Calculation. To do this they will need to navigate to the Grade
Calculation tab in Canvas. If the database is accessible, the user is able to see the Teacher In-
terface, otherwise the teacher receives an error page.

Goal: Administrator opens the Grade Calculation Teacher Interface in a specific course in
Canvas.

Precondition:The actor is an Administrator.

The actor is logged into Canvas.

The course the actor wants to access exists.

The specific course has Grade Calculation enabled.

Postcondition: The Teacher interface of Grade Calculation is shown for the accessed course.
Summary: The actor requests the Grade Calculation Teacher Interface for the accessed course.
Grade Calculation will show the Teacher interface for this course.

Priority: Could have

Administrator opens Grade Calculation Teacher Interface for any course

‘ Administrator User Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end Grade Calculation Logic module | | Grade Calculation Database

[ccestoome
y

¢ -tpdate vion

alt J[Database can be reached]

start launct

retrieve data

»
4
e retum data l

PR felum Teacharkmertace________
P A display intedface e I

Lo Etumenor
display emor =3
| S O w

1 T 1 T
Administrator User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | Grade Calculation Logic module | | Grade Calculation Database

waw.websequencediagrams.com

Figure 2.20: Administrator opens Grade Calculationfor any course

@GREAT GRADERS
51

Great Graders Software Requirements Document

2.7.4.3.2 Administrator defines or edits the final score structure and selects grading scheme

Administrator defines a new final score structure or edits an existing one in Grade Calcula-
tion. Moreover, since a final score structure cannot be validated without a grading scheme,
the administrator must select a grading scheme. To do this they need to use the “Grading
Structure" view in the Teacher Interface to build the desired structure, and select their de-
sired grading scheme.

Goal: Administrator defines a new final score structure or edits an existing one and selects
a grading scheme, all of which will be used to determine the final grade.

Precondition:

The actor is an Administrator.

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

All assessments are defined.

The database is accessible.

Postcondition: The final score structure and the selected grading scheme are saved into the
database.

Summary: The actor defines the final score structure that will be used to calculate the final
score whenever necessary.

Priority: Could have

@GREAT GRADERS
52

Great Graders

Software Requirements Document

Administrator defines or edits final score structure and selects grading scheme

‘ Administrator User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end H Grade Calculation Logic module || Grade Calculation Database

| openpage)
¢ _fetum response___
HJ start launch »
retrieve data »
T U
P N I
fetum Teacher interface _______
‘,._.__..____._F.‘i_v.‘"zy.‘.".le'!aﬁ_%
par
Toop J[Termination: Administrator ccks validats]
loop JT T Chicks save]
edit structure
e Lok D
save draft structure
send drafl structure N
i store draft structure }
e . I
,,,,,,,,,, retumresponse
[PR— relum response
oop JT clicks validate]
select grading scheme
send grading scheme »
b
store graning scheme N
o - M
,,,,,,,,,, retum response___________
PR roluT response,
T T
et sinctue [
send structure
«check struclure »
_;_g_}[:emm Tinal scofe structure]
(PR ——
Slofe Structure »
. - Ml
! retumresponse
< retum response
7 lincorect final score siructure]
<check failed
retum emor
mspia‘y emor page :

4
T4
T

T

‘ Administrator User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end H Grade Calculation Logic module | | Grade Calculation Database

wn websequencediagrams.com

Figure 2.21: Administrator defines or edits final score structure and selects grading scheme

53

GREAT GRADERS

Great Graders Software Requirements Document

2.7.4.3.3 Administrator views audit logs
Administrators views audit logs in Grade Calculation which displays the changes made within
the plugin.

Goal: Administrator views audit logs.

Precondition:

The actor is an Administrator.

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: The audit logs are displayed.

Summary: The actor is able to view the audit logs of the plugin. This way the actor can inves-
tigate potential problems.

Priority: Could have

Administrator views audit logs

‘ Administrator User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end Grade Calculation Logic module | | Grade Calculation Database

openpage 4
retum response |_J
|¢ - tum responze_
start launch »
retrieve dota »
T 4
e retumn data U
retum Teacher Interface
" display interface | r
I
alt J[Database can be reached]
request auait logs .
»
‘ send request N
b
relrieva data N
P
e-- retumn data
PR retum auaitios __________
¢ dispiay_auait logs
________________________]
[Daiabase cannot be reached]
rquest augit ogs N
L
send request »
retrieve data
e _felumemer
¢ display eror page.
I [I
1

Administrator User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface ‘ ‘ Grade Calculation Back-end | Grade Calculation Logic module | | Grade Calculation Database

www websequencediagrams.com

Figure 2.22: Administrator views audit logs

@GREAT GRADERS
54

Great Graders Software Requirements Document

2.7.4.3.4 Administrator filters audit logs
Administrator wants to view the audit logs to which a specific filter applies.

Goal: Administrator filters audit logs.

Precondition:

The actor is enrolled as a Administrator for the specific course.

The actor is logged into Canvas.

The actor has navigated to the specific course.

The actor has navigated to the audit logs view.

The specific course has Grade Calculation enabled.

Postcondition: Only the audit logs for which the filter applies are displayed.
Summary: The actor is able to view the filtered audit logs of the plugin. This way the actor
can investigate potential problems.

Priority: Won't have

Administrator filters audit logs

‘ Administrator User H Canvas ‘ Grade Calculation Interface || Grade Calculation Back-end || Grade Calculation Logic module H Grade Calculation Database |

T
apply filter

| send reguest

[Valid fifter enterea]
request data

,
‘ il
retum data
+

,,,,,,,,,,“PQF‘FJ’JEP,‘EL,,,,,,,,,,,,,,

[invaiid fiiter entered]

dispiay error page
............... E‘I}‘_P"S_T T

Administrator User ‘ ‘ Canvas ‘ ‘ Grade Calculation Interface | | Grade Calculation Back-end | | Grade Calculation Logic module ‘ ‘ Grade Calculation Database |
www.websequencediagrams.com

Figure 2.23: Administrator filters audit logs

@GREAT GRADERS
55

Great Graders Software Requirements Document

2.7.4.3.5 Administrator exports to CSV
Administrator desires to export a set of marks, partial and/or final grades into a CSV file.

Goal: Administrator exports marks, partial grades and/or final grades with the corresponding
SISIDstoa CSV file.

Precondition:

The actor is enrolled as a Administrator for the specific course.

The actor is logged into Canvas.

The actor has navigated to the specific course.

The specific course has Grade Calculation enabled.

Postcondition: The final grades, partial grades, and/or marks with the corresponding SIS IDs
are storedina CSV file.

Summary: The actor can export final grades, partial grades, and/or marks with the corre-
sponding SIS IDs such that they are saved in a CSV file.

Priority: Could have

Administrator exports to CSV

‘ Administrator User | ‘ Canvas ‘ ‘ Grade Calculation Interface | | Grade Calculation Back-end ‘ ‘ Grade Calculation Logic module ‘ ‘ Grade Calculation Database
l
start faunch] N
relne\.‘e date >
" =y I
,,,,,,, retum Teacher Intartace ______ 1]
VI @Lsptagjn@z@sg,,,,,,,,,,,,,,,[F
request "Student Grades” view »
1] sons s R
i refrieve data N
‘ 777777777777 retum data g
,,,,,,,,,, retumresponse |}
display *Student Grades” view r
select ;xpm option ;l
rlur, esporse il
Sedects export final L]lﬂd?‘ partial grades, andior marks y |
sand roquast N
[Jiosassss cor e esehed] .
refrieve data)
P P il
mmmmennsd felum response______ ...
P
[Database cannot be reached]
otriovo data | |-~~~
PR il
. ulspla)" ‘eror page .
1 T

T
Administrator User Grade Calculation Interface Grade Calculation Back-end Grade Calculation Database

‘ Canvas

‘ Grade Calculation Logic module

W websequencediagrams.com

Figure 2.24: Administrator exports to CSV

@GREAT GRADERS
56

Great Graders 3.1.1.1

Chapter 3

Specific Requirements

In this chapter, all software requirements of the product to be developed are specifically
stated. The software requirements are based on tequirements as stated in the URD [1]. For
prioritizing requirements, the MoSCoW model is used [7]. The capital letters in MoSCoW
stand for:

Priority Abbreviation Explanation

Must have M These requirements will be implemented by the end of this
project.

Should have S These requirements should ideally but not essentially be

implemented during this project.

Couldhave C These requirements will be implemented if there is still
time available after having implemented the 'Must have’
and 'Should have’ requirements.

Won'thave W These requirements will not be implemented during this
project and could be implemented in a later project.

3.1 Functional Requirements

3.1.1 Student Interface

3.1.1.1 Attributes

SR-1 Must have
course: object
An object describing all variables set by a teacher or administrator including
the grading scheme used, the description of the final score structure, the final
score structure itself, all assessments, and the grade definitions.

SR-2 Must have

marks: array
@GREAT GRADERS
57

Great Graders Software Requirements Document

SR-2
An array of marks obtained by the student. Every element is an object which
holds the assessment ID, the date of change, and the mark and score the stu-
dent received.

Must have

SR-3
grades: array
An array of the grades obtained by the student. Every element is an object
which holds the assessment ID, the date of change, the grade the student
received, and whether this grade is seen as a pass.

Must have

3.1.1.2 Operations

SR-4
convert_json_data_source(): array
Transforms a JSON object into an array which can be displayed in the student

interface.
Input

o final_score_structure: JSON object
e course:object
e marks: array
e grades: array
Precondition
o final_score_structure # NULL
o final_score_structure is defined as described in 2.7.3.2.
e course # NULL
e marks # NULL
e grades # NULL
Postcondition
e The transformed JSON object is returned.

Must have

3.1.2 Teacher Interface - Grading Structure

3.1.2.1 Attributes

SR-5
grading_schemes: array
An array that contains all the different grading schemes the teacher can se-
lect.

Must have

SR-6
course: object
An object describing all variables previously saved by a teacher or adminis-
trator including the grading scheme used, the description of the final score
structure, the final score structure itself, all assessments, and the grade defi-
nitions.

Must have

@GREAT GRADERS
58

Great Graders Software Requirements Document

3.1.2.2 Operations

SR-7 Could have
import_final_score_structure(): void
The teacher imports the final score structure from another course.
Input
e course_id: integer
Precondition
e course_id exists in the database.
e course_id # NULL.
Postcondition
e A final score structure from the course selected by the teacher is
loaded to the current course’s “Grading Structure" view.
e Theresultis displayed to the teacher.
¢ If the source course has different assessments than the target course,
then the teacher is notified.

SR-8 Must have
select_grading_scheme(): void
The teacher selects the grading scheme they desire.
Input
e grading_scheme_name: string
Precondition
e grading_scheme_name # NULL
Postcondition
e The teacher selects the grading scheme they desire and the choice is
saved to the database.
e Theresultis displayed to the teacher.

SR-9 Should have

edit_description(): void
Teacher can edit the description of the final score structure.
Input

e description: string
Postcondition

e The teacher edits the description of the final score structure and all

edits are saved to the database.
e Theresultis displayed to the teacher.

SR-10 Must have
add_assessment(): void
The teacher adds an assessment to an assessment set in the final score struc-
ture.

@GREAT GRADERS
59

Great Graders Software Requirements Document

SR-10 Must have
Input
e assessment_set_child_array: array
minimum_requirement :string, float or nil
assessment_name: string
grading_type: string
maz: Tloat
due_date: Time
e weight: float or nil
Postcondition
e The chosen assessment is now a child of the assessment set.
e Theresultis displayed to the teacher.

SR-11 Should have
delete_assessmenty(): void
The teacher deletes an assessment from the final score structure.
Postcondition
e The chosen assessment is deleted from the final score structure.
e Theresultis displayed to the teacher.

SR-12 Should have
edit_assessment(): void
The teacher edits an assessment in the final score structure.
Input
e weight: integer
® min_requirement: string
e name: string
Postcondition
e Thevariables of the assessment are overwritten by the input.
e Theresultis displayed to the teacher.

SR-13 Could have
add_constant(): void
The teacher adds a constant to an assessment set in the final score struc-

ture.
Input

e name: string
e value: number
Postcondition
e The constant is now a child of the assessment set.
e Theresultis displayed to the teacher.

SR-14 Must have

add_assessment_set(): void
@GREAT GRADERS
60

Great Graders Software Requirements Document

SR-14 Must have
The teacher adds an assessment set to the final score structure.
Input

o weight: float

o min_requirement: float

e name: string

e calculation_type: string
Postcondition

e The assessment set with the input variables is displayed in the final

score structure.

SR-15 Should have

delete_assessment_set(): void
The teacher deletes an assessment set from the final score structure.
Precondition

e The children array of the assessment set must be empty.
Postcondition

e Thechosen assessment set and all of its children are deleted from the

final score structure.
e Theresultis displayed to the teacher.

SR-16 Should have
edit_assessment_set(): void
The teacher edits an assessment set in the final score structure.
Input
e weight: integer
e min_requirement: string
e name: string
e calculation_type: string
Postcondition
e Thevariables of the assessment set are overwritten by the input.
e Theresultis displayed to the teacher.

SR-17 Must have
add_multiple_attempts(): void
The teacher creates a new attempt for an assessment in the final score struc-

ture.
Input

e assessment: MarkNode
e calculationMethod: string
Postcondition
¢ Anassessment set with the given calculation method is created in place
of the original assessment. The original assessment, along with its new
attempt, are added to this assessment set.
e Theresultis displayed to the teacher.

@GREAT GRADERS
61

Great Graders Software Requirements Document

SR-18 Could have
add_condition_component(): void
The teacher creates a new condition block in the final score structure.
Input
e condition: string
e choicel: array
e choice2: array
Precondition
e The two choice arrays are defined.
Postcondition
¢ The condition block is added to the assessment set.
e Theresultis displayed to the teacher.

SR-19 Must have
save(): void
The selected grading scheme, final score structure, and the description of the

II"lnaI Escore structure are saved to the database.
npu

e grading_scheme_name: string
e translated_final_score_structure: array
e description: string
Postcondition
e Theselected grading scheme, final score structure, and the description
of the final score structure are saved to the database.

SR-20 Must have
submit(): void
The final score structure is validated and if the validation tests pass the final

score structure is submitted to the database.
Input

e grading_scheme_name: string

e translated_final_score_structure: array

e description: string

Postcondition

o [f all validation tests are passed, the final score structure, the selected
grading scheme and the descriptionis saved to the database. Theresult
is then displayed to the teacher.

¢ |f at least one of the validation tests fail, an error is thrown.

SR-21 Could have
warning(): void
A warning is shown to the Teacher if they define the final score structure
before defining assignments in Canvas.

@GREAT GRADERS
62

Great Graders Software Requirements Document

SR-21 Could have
Precondition
¢ No assignments defined in Canvas.
Postcondition
e The warning is shown to the teacher.

SR-22 Could have
notifyTeacher(): void
The teacher is notified to manually recompute the final and partial grades, if

achange in the marks, final score structure, or the grading scheme is made.
Precondition

e A change is made in the marks, final score structure, or the grading
scheme.
Postcondition
e The pop-up is shown to the teacher stating that they should recom-
pute the final and partial grades.

3.1.3 Teacher Interface - Student Grades

3.1.3.1 Attributes

SR-23 Must have
course: object
An object describing all variables previously saved by a teacher or adminis-
trator including the grading scheme used, the description of the final score
structure, the final score structure itself, all assessments, and the grade defi-
nitions.

SR-24 Must have
users: array
An array which contains elements holding the user’'s name and the marks and
grades that correspond to this user.

3.1.3.2 Operations

SR-25 Should have
mute(): void
The teacher mutes an assessment so that the students can no longer see
the result.

@GREAT GRADERS
63

Great Graders Software Requirements Document

SR-25 Should have
Input
e assessment_id: string
Precondition
e The assessment is unmuted.
Postcondition
e The assessment is now muted.
e Theresultis displayed to the teacher.

SR-26 Should have
unmute(): void
The teacher unmutes an assessment so that the students can see the result.
Input
e assessment_id: string
Precondition
e The assessment is unmuted.
Postcondition
e The assessment is unmuted.
e Theresultis displayed to the teacher.

SR-27 Should have
mute_set(): void
The teacher mutes an assessment set so that the students can no longer

see the result.
Input

o assessment_id: string
Precondition

e The assessment set is unmuted.
Postcondition

e The assessment set is now muted.

e Theresultis displayed to the teacher.

SR-28 Should have
unmute_set(): void
The teacher unmutes an assessment set so that the students can see the

result.
Input

e assessment_id: string
Precondition

e The assessment set is unmuted.
Postcondition

e The assessment set is unmuted.

e Theresultis displayed to the teacher.

@GREAT GRADERS
64

Great Graders Software Requirements Document

SR-29 Could have
filter(): void
The teacher applies a filter condition to the student grades table to only

IShOV\é students that fall within this filter condition.
npu

o filter: string
Postcondition
¢ Only the students and the corresponding grades are displayed for the
students that fall within the filter condition.

SR-30 Should have

mark_adjustment(): void
The teacher applies a mark adjustment to an assessment’s marks using a
formula they defined.
Input

e base: number

o multiplier: number
Postcondition

e The adjusted marks are shown to the teacher in place of the original

marks.

SR-31 Should have
search(): void
The teacher applies a search condition to the student grades table to only

thV\é students that fall within this search condition.
npu

o search: string
Postcondition
e Onlythe students and the corresponding grades are displayed for the
students that fall within the search condition.

SR-32 Could have
test _calculation(): void
Teacher enters marks for assessments to do a test calculation to check the

final score structure.
input

e marks:array

e translated_final_score_structure: array
Precondition

o translated_final_score_structure # NULL

o translated_final_score_structure is defined as described in 2.7.3.2.
Postcondition

e The calculated final score is displayed to the teacher.

@GREAT GRADERS
65

Great Graders Software Requirements Document

SR-33 Should have
display_logs(): void
The teacher views audit logs.
input
e course_id: integer
Precondition
e course_id exists in the database.
e course_id # NULL.
Postcondition
o Audit logs of the course are retrieved.
e Theresultis displayed to the teacher.

3.1.3.3 DataSource-JSON Conversion

SR-34 Must have
convert_data_source_json(): JSON object
Transforms the array which is used for display into a JSON Object.
Input
e translated_final_score_structure: array
Precondition
e translated_final_score_structure # NULL
o translated_final_score_structure is defined as described in 2.7.3.2.
Postcondition
e The transformed final score structure object is returned as a JSON ob-
ject.

3.1.4 Administrator Interface - Grading Structure

3.1.4.1 Attributes

SR-35 Could have
grading_schemes: array

An array that contains all the different grading schemes the administrator
can select.

SR-36 Could have
course: object

An object describing all variables previously saved by a teacher or adminis-
trator including the grading scheme used, the description of the final score
structure, the final score structure itself, all assessment, and the grade defi-
nitions.

3.1.4.2 Operations

@GREAT GRADERS
66

Great Graders Software Requirements Document

SR-37 Could have
select_grading_scheme(): void
The administrator selects the grading scheme they desire.
Input
e grading_scheme_name: string
Precondition
e grading_scheme_name # NULL
Postcondition
e The administrator selects the grading scheme they desire and the
choice is saved to the database.
e Theresultis displayed to the administrator.

SR-38 Could have
save(): void
The selected grading scheme, final score structure, and the description of

Fhe ﬁtnal score structure are saved to the database.
npu

e grading_scheme_name: string
e translated_final_score_structure: array
e description: string
Postcondition
e The selected grading scheme, final score structure, and the descrip-
tion of the final score structure are saved to the database.

SR -39 Could have
submit(): void
The final score structure is validated and if the validation tests pass the final

score structure is submitted to the database.
Input

e grading_scheme_name: string

e translated_final_score_structure: array

e description: string

Postcondition

¢ [fall validation tests are passed, the final score structure, the selected
grading scheme and the description is saved to the database. The re-
sult is displayed to the administrator.

o If at least one of the validation tests fail, an error is thrown.

SR-40 Could have
add_assessment(): void
The administrator adds an assessment to an assessment set in the final
score structure.

@GREAT GRADERS
67

Great Graders Software Requirements Document

SR-40 Could have
Input
e assessment_set_child_array: array
e assessment: MarkNode
e weight: string
Postcondition
e The chosen assessment is now a child of the assessment set.
e Theresultis displayed to the administrator.

SR-41 Could have
delete_assessment(): void
The administrator deletes an assessment from the final score structure.
Postcondition
e Thechosen assessment and all of its children are deleted from the final
score structure.
e Theresultis displayed to the administrator.

SR-42 Could have
edit_assessment(): void
The administrator edits an assessment in the final score structure.
Input
e weight: integer
e min_requirement: string
e name: string
Postcondition
e The variables of the assessment are overwritten by the input.
e Theresultis displayed to the administrator.

SR-43 Could have
add_constant(): void
The administrator adds a constant to an assessment set in the final score

structure.
Input

e name: string
e value: number
Postcondition
e The constant is now a child of the assessment set.
e Theresultis displayed to the administrator.

SR-44 Could have
add_assessment_set(): void
The administrator adds an assessment set to the final score structure.

@GREAT GRADERS
68

Great Graders Software Requirements Document

SR-44 Could have
Input

o weight: float

e min_requirement: float

e name: string

e calculation_type: string
Postcondition

e The assessment set with the input variables is displayed in the final

score structure.
e Theresultisdisplayed to the administrator.

SR-45 Could have
delete_assessment_set(): void
The administrator deletes an assessment set from the final score structure.
Postcondition
e The chosen assessment set and all of its children are deleted from the
final score structure.
e Theresultis displayed to the administrator.

SR-46 Could have
edit_assessment_set(): void
The administrator edits an assessment set in the final score structure.
Input
e weight: integer
e min_requirement: string
e name: string
e calculation_type: string
Postcondition
e Thevariables of the assessment set are overwritten by the input.
e Theresultis displayed to the administrator.

SR-47 Could have
add_multiple_attempts(): void
The administrator creates a new attempt for an assessment in the final score

structure.
Input

e assessment: MarkNode
Postcondition
¢ An assessment set of maximum calculation method is created in place
of the original assessment. The original assessment, along with its new
attempt, are added to this assessment set.
e Theresultis displayed to the administrator.

@GREAT GRADERS
69

Great Graders Software Requirements Document

SR-48 Could have
add_condition_component(): void
The Administrator creates a new condition block in the final score structure.
Input
e condition: string
e choicel: array
e choice2: array
Precondition
e The two choice arrays are defined.
Postcondition
¢ The condition block is added to the assessment set.
e Theresultis displayed to the teacher.

3.1.5 Administrator Interface - Student Grades

3.1.5.1 Attributes

SR-49 Could have
course: object
An object describing all variables previously saved by the teacher or admin-
istrator including grading scheme used, description of the final score struc-
ture, the final score structure itself, all assessment, and grade definitions.

SR-50 Could have
users: array

An array which contains elements holding the user’s name and the marks
and grades that correspond to this user.

3.1.5.2 Operations

SR-51 Could have
display_logs(): void
The administrator views audit logs.
input
e course_id: integer
Precondition
e course_id exists in the database.
e course_id # NULL.
Postcondition
e Audit logs of the course are retrieved.
e Theresultis displayed to the administrator.

3.1.5.3 DataSource-JSON Conversion

@GREAT GRADERS
70

Great Graders Software Requirements Document

SR-52 Could have
convert_data_source_json(): JSON object
Transforms the array which is used for display into a JSON Obiject.
Input
e translated_final_score_structure: array
Precondition
o translated_final_score_structure # NULL
o translated_final_score_structure is defined as described in 2.7.3.2.
Postcondition
¢ Thetransformed final score structure object is returned as a JSON ob-
ject.

3.1.6 Course

3.1.6.1 Attributes

SR-53 Must have
grading_scheme: string
The representation of the grading scheme used in the course.

SR-54 Must have
score_structure: json
The representation of the final score structure used in the course. Matches
the specification described in 2.7.3.2

SR-55 Should have
score_structure_description: string
The description of the score structure added by the teacher

3.1.7 Assessment

3.1.7.1 Attributes

SR-56 Must have
course: Course
Areference to the course this assessment belongs to

SR-57 Must have
name: string
The name of the assessment

@GREAT GRADERS
71

Great Graders Software Requirements Document

SR-58 Must have
mark_type: string
The representation type of the type of mark expected, either ‘points’, ‘per-
cent’, or ‘complete_incomplete’

SR-59 Must have
required: string or float
The minimum required mark for this assessment to pass the course, depend-
ing on the mark_type

SR - 60 Should have
mark_adjustment: boolean

Determines whether this assessment’s marks are adjusted using the ad-
justment_base and adjustment_multiplier

SR-61 Should have
adjustment_base: float

Determines ninn 4 m - ¢ 2nts obtained

_ Total number of pomts when the assessment’s marks are
mark adjusted

SR -62 Should have
adjustment_multiplier: float

H : . points obtained)
Determl_nes MANT+ M o s of points when the assessment’s marks are
mark adjusted

3.1.8 Student

3.1.8.1 Attributes

SR-63 Should have
name: string
The name of this student in Canvas

SR-64 Should have
student_id: string
The SIS ID of this student

SR-65 Must have
course: Course
A reference to the course this student belongs to

@GREAT GRADERS
72

Great Graders Software Requirements Document

3.1.9 Mark

3.1.9.1 Attributes

SR-66 Must have
max: String
The maximum value that this mark can have

SR-67 Must have
assessment_id: String
The assessment this mark belongs to

SR -68 Must have
student_id: String
The student this mark belongs to

SR-69 Must have
value: String

The value a student obtained for an assessment. This can be 'complete’,

‘incomplete’, 'no_show’, ’excused’, or a string containing the numeric value

achieved.

SR-70 Must have
grading_type: String
The type of the markwhich can be ’points, ’'percentage’ or 'com-
plete_incomplete’.

3.1.9.2 Operations

SR-71 Must have
transform(): score
Takes a mark and converts it into a score
Postcondition
e the parameters of the mark are the parameters of the returned score
object

SR-72 Should have
adjust(): number or string
Adjusts the value of a mark (—2¢2"¢— . multiplier + base)

max_score
@GREAT GRADERS

Great Graders Software Requirements Document

SR-72 Should have
Input

e score: float

e max_score: float

e base: float

o multiplier: float
Postcondition

e The adjusted mark is returned

3.1.10 Grade

3.1.10.1 Attributes

SR-73 Must have
student: Student
A reference to the student which the grade belongs to

SR-74 Must have
grade_id: string
The unique ID of the grade in the score structure, final if this grade repre-
sents the final grade, or mandatory if this grade represents the mandatory
assessments

SR-75 Must have
grade: string
Represents the grade the student has received, which can be ‘excused’, ‘pass’,
‘fail’, ‘N/A or a string returned by the grading scheme

SR-76 Should have
muted: boolean
Determines whether the grade is muted

SR-77 Should have
updated_at: date
Determines when the grade was last updated

3.1.10.2 Operations

SR-78 Should have
convert_fail(): void
If the grade is 'fail’, replaces it with constant instead.

@GREAT GRADERS
74

Great Graders Software Requirements Document

SR-78 Should have
Input
e constant :string
Precondition
e For each student the final grade is calculated and is set to "fail" if not
all minimum requirements are met.
Postcondition
e For all students of the course, each course grade that is already in the
database, is updated with the possibly changed grade

3.1.11 Score

3.1.11.1 Attributes

SR-79 Must have
value: rational or nil
The value of the score, can be numeric or 'excused’

SR-80 Must have
type: string
The representation type of the value, either ‘points’ or ‘excused’

3.1.12 Constant

3.1.12.1 Attributes

SR-81 Could have
value: numeric
The value of the constant

SR-82 Could have
max: numeric

The maximum value of the constant, used for turning the constant into a

fraction

3.1.12.2 Operations

SR -83 Could have
transform(): score
Returns the value of the constant as a Score object

@GREAT GRADERS
75

Great Graders Software Requirements Document

SR-83 Could have
Postcondition

e the parameters of the constant are the parameters of the returned
score.

3.1.13 Calculation Method

3.1.13.1 Unweighted average

3.1.13.1.1 Operations

SR-84 Must have
calculate(): score
Takes an array of scores and computes the unweighted average
Input scores: array of score objects
Postcondition
¢ the unweighted average is returned as a score object

3.1.13.2 Weighted average

3.1.13.2.1 Operations

SR-85 Must have
calculate(): score
Takes an array of scores and an array of weights and computes the weighted
average
Input
e scores:array of score objects
e weights: array of weights
Precondition
all elements of scores are of type score with type points
all weights input as percentages are transformed into fractions.
all elements of weights add up to one
scores and weights are of the same length

Postcondition
e the weighted average is returned asa score object

3.1.13.3 Bestxofy

3.1.13.3.1 Operations

SR-86 Should have
calculate(): score

@GREAT GRADERS
76

Great Graders Software Requirements Document

SR-86 Should have
Takes an array of scores, an array of booleans and an integer x and computes
the unweighted average of the best given scores, always including the scores i
for which boolean i is true
Input

e scores:array of score objects

o always_counts: array of booleans

e r:int
Precondition

e zissmaller than or equal to size of the array of scores

e Thessizes of the arrays are equal.

e The number of “true" valued booleans is smaller than or equal to =
Postcondition

e The best x of y is returned as a score object

3.1.13.4 Worstxofy

3.1.13.4.1 Operations

SR-87 Should have
calculate(): score

Takes an array of scores, an array of booleans and an integer x, and computes
the unweighted average of the worst given scores, always including the scores

for which boolean i is true
Input

e scores:array of score objects

e always_counts :array of booleans

e r:int
Precondition

e zissmaller than the array size of scores

e Thessizes of the arrays are equal.

e The number of “true" valued booleans is smaller than or equal to =
Postcondition

e Theworst x of yisreturned as a score object

3.1.13.5 Sum

3.1.13.5.1 Operations

SR-88 Should have
calculate(): score

Takes an array of scores, computes the sum of score values, and takes the mini-

mum of that sum and 1
Input

e scores:array of score objects
Postcondition
e Theresultisreturned as a score object

@GREAT GRADERS
77

Great Graders Software Requirements Document

3.1.13.6 Subtraction

3.1.13.6.1 Operations

SR-89
calculate(): score

Takes an array of scores, computes the subtraction of the first score value and
the rest of the scores values
Input

e scores:array of score objects
Postcondition

e Theresultis returned as a score object

Should have

3.1.13.7 Maximum

3.1.13.7.1 Operations

SR-90
calculate(): score

Takes an array of scores, returns the maximum score value
Input

e scores:array of score objects
Postcondition

e Theresultisreturned as a score object

Should have

3.1.13.8 Minimum

3.1.13.8.1 Operations

SR-91
calculate(): score

Takes an array of scores, returns the minimum score value
Input

e scores:array of score objects
Postcondition

e Theresultis returned as a score object

Should have

3.1.14 Condition

3.1.14.1 Operations

SR-92
calculate(): score

Takes two scores and a condition, and returns the first score if the condition holds,

otherwise it returns the second score
@GREAT GRADERS
78

Could have

Great Graders Software Requirements Document

SR-92

Input
e scorel:score object
e score2:score object

e condition: statement that evaluates to true or false
Postcondition

e Theresultisreturned as a score object

Could have

3.1.15 Grading schemes

3.1.15.1 Grading scheme handler

3.1.15.2 Operations

SR-93
apply(): string
Takes a score and a grading scheme, and returns the grade obtained by applying

the grading scheme to the score
Input

® score:score object

e grading_scheme: grading scheme object
Postcondition The result is returned as a string

Must have

3.1.15.3 0-10rounding to nearest integer

3.1.15.3.1 Operations

SR-94
compute(): string
Takes a score and returns the grade obtained by applying the 1 to 10 integer grad-

ing scheme to the score
Input

® score:score object
Postcondition The result is returned as a string

Must have

3.1.15.4 0-10roundingto 1 decimal

3.1.15.4.1 Operations

SR-95
compute(): string

Takes a score and returns the grade obtained by applying the grading scheme

which rounds a score to one decimal
Input

e score: score object
Postcondition The result is returned as a string

Must have

@GREAT GRADERS
79

Great Graders Software Requirements Document

3.1.15.5 0-10roundingto 2 decimals

3.1.15.5.1 Operations

SR-96 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to two decimals
Input
® score:score object
Postcondition The result is returned as a string
3.1.15.6 0-10rounding to nearest half
3.1.15.6.1 Operations
SR-97 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to the nearest half
Input
e score:score object
Postcondition The result is returned as a string
3.1.15.7 0-10rounding to nearest quarter
3.1.15.7.1 Operations
SR-98 Must have
compute(): string
Takes a score and returns the grade obtained by applying the grading scheme
which rounds a score to the nearest quarter
Input
e score:score object
Postcondition The result is returned as a string
3.1.15.8 UKetter grade
3.1.15.8.1 Operations
SR-99 Must have

compute(): string

Takes a score and returns the grade obtained by applying the grading scheme

which transforms the score to an UK letter grade
Input

e score:score object
Postcondition The result is returned as a string

@GREAT GRADERS
80

Great Graders Software Requirements Document

3.1.15.9 US letter grade

3.1.15.9.1 Operations

SR-100
compute(): string

Takes a score and returns the grade obtained by applying the grading scheme

which transforms the score to an US letter grade
Input

e score: score object
Postcondition The result is returned as a string

Must have

3.1.15.10 Percentage

3.1.15.10.1 Operations

SR-101
compute(): string

Takes a score and returns the grade obtained by applying the grading scheme

which transforms the score to an percentage
Input

e score: score object
Postcondition The result is returned as a string

Must have

3.1.16 Grade Calculator

3.1.16.1 Operations

SR-102
calculate(): void

Calculates the grades by the defined course score structure, for each student in
course, using the marks in the database and stores them in the database.

Must have

@GREAT GRADERS
81

Great Graders Software Requirements Document

SR-102 Must have
Input
e course: Course entry
Precondition
¢ All marks used in the score structure, are in the database for each stu-
dent of the course.
e The score structure of the course has been defined and matches the
specifications listed in 2.7.3.2.
e The grading scheme of the course has been defined.
Postcondition
e For each student the partial grades are calculated
e For each student the final grade is calculated and is set to "fail" if not all
minimum requirements are met.
e For all students of the course, each course grade that is not in the
database, is added to the database
e For all students of the course, each course grade that is already in the
database, is updated with the possibly changed grade
e For all students of the course, each course grade in the database that is
not a grade anymore, is removed from the database

SR-103 Could have
count(): void
Counts the amount of marks with 'no_show’ value, the amount with ‘incomplete

value and the amount equal to the sum of these two amounts.
Input

e course: Course entry
e no_show_constant float
o incomplete_constant Tloat
o no_show_plus_incomplete_constant float
Precondition
¢ Allmarks usedinthe score structure, are in the database for each stu-
dent of the course.
e The final grade of all students has already been calculated
Postcondition
e For each student the final grade is set to "fail" if one of these three
amounts is lower than a specified constant

1]

3.1.17 Import

3.1.17.1 Canvas API

3.1.17.1.1 Attributes

SR-104 Must have
course_id: int
The Canvas course ID for which this instance will be used

@GREAT GRADERS
82

Great Graders Software Requirements Document

3.1.17.1.2 Operations

SR-105 Must have
get_course_users(): array
Returns the users of the course that the Canvas API provides, parses the JSON
data, and returns the data as a array
Precondition
e A connection with Canvas is instantiated
Postcondition
¢ An array containing hashes with user information of Canvas (id, name,
created_at, sortable_name, short_name) is returned
SR-106 Must have
get_course_assignments(): array
Returns all the assignments of the course that the Canvas API provides, parses the
JSON data, and returns the array containing a hash for each assignment
Precondition
e A connection with Canvas is instantiated
Postcondition
¢ An array containing for each assignment a hash with the provided as-
signment information of Canvas is returned
SR-107 Must have
get_submissions(): array
Returns all the submissions of a specific assignment that the Canvas API provides,
parses the JSON data, and returns in an array a hash for each submission
Input
e assignment_id: int
Precondition
e A connection with Canvas is instantiated
Postcondition
e An array containing for each assignment a hash with the provided as-
signment information of Canvas is returned
3.1.17.2 Assessment importer
3.1.17.2.1 Attributes
SR-108 Must have

canvas_api: CanvasApi
Object that can make API requests to Canvas

3.1.17.2.2 Operations

@GREAT GRADERS
83

Great Graders Software Requirements Document

SR-109 Must have
import(): void
Imports all Canvas assignments of the course into the assessments table of the

Grade Calculation database
Precondition

Postcondition
e Canvas assignments that are not assessments in the database are
added
e Canvas assignments that are already assessments in the database are
updated with the imported information
e Canvas assessments that are no longer a Canvas assignment are re-
moved from the database

3.1.17.3 CSV marks importer

3.1.17.3.1 Operations

SR-110 Should have
import(): void
The teacher imports a CSV file with marks for an assessment it in the database
Input
e csv: CSV object
e assessment: assessment database entry
Precondition
The file uploaded is of CSV format
The CSV has 2 columns
The first header name of CSV is called 'StudentID’
The second header name of csv is equal to the value of assess-
ment.name
e All studentsin csv are also in the database
Postcondition
e Assessment marks for students that do not have a mark for
assessment in the database but have a mark in csv, are added to the
database.
e Assessment marks of students that already have a mark for
assessment and are in csv, are updated with the mark in csv.

SR-111 Should have
import_multiple(): void
The teacher imports a CSV with marks for multiple assessments in the database

@GREAT GRADERS
84

Great Graders Software Requirements Document

SR-111 Should have
Input
e csv:CSV object
e assessments:array of assessment database entries
Precondition
e The file uploaded is of CSV format
e csv has n + 1 columns, where n is the number of assessments in
assessments.
e The first header is called ‘StudentID’ and the rest are the names of
the assessments.
e assessments[i].name equals the name of the i + 1" header
e All studentsinthe CSV are also in the database
Postcondition
e For each assessment in assessments: Assesment marks for students
that do not have a mark for assessment in the database but have a
mark in csv, are added to the database.
e For each assessment in assessments: Assessment marks of students
that already have a mark for the assessment and are in csv, are up-
dated with the mark in the csv.

3.1.17.4 Markimporter

SR-112 Must have
canvas_api: CanvasApi
Object that can make API requests to Canvas

SR-113 Must have
import(): void
Imports assignment marks of the Canvas course into the database
Precondition
e For each mark that is added, the corresponding Canvas assignment is
already added as assessment into the database
Postcondition
e The Canvas assignment marks are inserted/updated/removed from
the database.
e For all students of the course, each assignment mark that is not in the
database, is added to the database
e For all students of the course, each assignment mark that is already in
the database, is updated with the possibly changed mark
e For all students of the course, each assignment mark in the database
that is not a mark anymore, is removed from the database

3.1.17.5 Studentimporter

SR-114 Must have

canvas_api: CanvasApi
@GREAT GRADERS
85

Great Graders Software Requirements Document

SR-114 Must have
Object that can make API requests to Canvas

SR-115 Must have
import(): void
Imports students of the launched Canvas course, into the database
Postcondition
o All students of the Canvas course that are not in the database, are
added to the database.
e All students of the Canvas course that are already in the database, are
updated with the new student information.
e All students in the database that are not in Canvas anymore, are re-
moved from the database.

3.1.18 Export

3.1.18.1 CSV exporter

3.1.18.1.1 Operations

SR-116 Should have
export(): csv object
A teacher exports a CSV containing all students with the corresponding marks

and scores for each assessment, as well as the partial and final grades
Precondition

e The teacher selects category of grades for CSV export
e The teacher clicks 'Export’ button
Postcondition

e A CSV containing all students and their corresponding marks for
each assessment is returned.

e The CSV has 4 columns with student ID, SIS ID, a grade name and the
corresponding grade.

e The teacher chooses the directory where the resulting CSV file
should be saved.

3.1.19 Controllers

3.1.19.1 Assessment Controller

3.1.19.1.1 Operations

SR-117 Must have
import(): void
Imports assignment information of the course, from Canvas, into the database
Input POST request
Precondition

@GREAT GRADERS
86

Great Graders Software Requirements Document

SR-117 Must have

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher
Postcondition

e Arequest to the ASSESSMENT IMPORTER is made

SR-118 Must have
index(): void
For each assessment of the course the information is rendered as JSON
Input GET request
Precondition

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
e The assignments of the course are imported
Postcondition
e A JSON response containing the information for each assessment isre-
turned.

SR-119 Must have
show(): void
For a requested assessment of the course the information is rendered as JSON
Input GET request containing assessment id of the requested assessment
Precondition

e Therequested assignment of the course is imported in the database
e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
e A JSON response containing the information of the requested assess-
ment is returned.

SR-120 Should have
create(): void
Creates an assessment from a CSV and adds it to the database
Input
e POST request containing assessment information is made
e CSVfile
e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Precondition

@GREAT GRADERS
87

Great Graders Software Requirements Document

SR-120 Should have

The CSV file is properly formatted (see 110)
The POST request contains all assessment information parameters
The user that initiates the request is logged in into Canvas
The user that initiates the request is a Teacher
Postcondition
e The assessment with the provided assessment information is made

SR-121 Must have
update(): void
Updates information of an assessment
Input
e POST request containing assessment information that the user wishes
to change
Precondition

e The POST request contains all assessment information parameters of
which the user wishes to change

e The POST request can only contain the parameters: name, mark_type,
max_score, published, muted, normalized, normalized_base, nor-
malized_multiplier, minimum_requirement, attempt_number and at-
tempt_assessment_id

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher

Postcondition
e The assessment with the provided assessment information is updated

3.1.19.2 Audit Log Controller

3.1.19.2.1 Operations

SR-122 Could have
index(): void
Each audit log related to the course is rendered as JSON
Input GET request
Precondition

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
¢ A JSON response containing the audit logs of the course is returned.

3.1.19.3 Course controller

3.1.19.3.1 Operations

@GREAT GRADERS
88

Great Graders Software Requirements Document

SR-123 Must have

SR-123 Must have
show(): void
For the currently launched course, the information is rendered as JSON
Input GET request containing the current session
Precondition

e The course of the current session is in the database
e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
e A JSON response containing information for the currently launched
course is returned.

SR-124 Must have

update(): void
Updates grading_scheme, score_description, score_structure and
draft_score_structure of the course
Input

e POST request containing course information that the user wishes to

change

Precondition

e The course that the user wishes to update is in the database

e The POST request contains all course information parameters which
the user wishes to change

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher

Postcondition

e The course is updated with the passed course information parameters

¢ |[f changes to either the grading_scheme or final_score_structure are
made stored

e Updates are saved in the audit logs

3.1.19.4 Grade Controller

3.1.19.4.1 Operations

SR-125 Must have
calculate(): void
Computes the grades using the information stored in the database
Input POST request
Precondition

@GREAT GRADERS
89

Great Graders Software Requirements Document

SR-125 Must have

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
e All the information needed to compute the grades is present in the
database. (Marks, assessments, course, students, grade definitions
Postcondition
o Allthe grades stored in the database

SR-126 Could have
notifies(): void
Notifies the front-end if marks have been changed after calculating grades has

happened. Gets called automatically if marks are changed.
Input GET request

Postcondition
¢ Front-end is notified if grades have been calculated before the marks
where changed.

3.1.19.5 Grade Definition Controller

3.1.19.5.1 Operations

SR-127 Must have
index(): void
For each grade definition of the course, get the information and renders it as JSON
Input GET request
Precondition

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
e The grade definitions of the course are imported
Postcondition
¢ A JSON response containing information of each grade definition is re-
turned

SR-128 Must have
show(): void
For a requested grade definition the information is rendered as JSON
Input GET request containing the ID of the grade definition
Precondition

e Therequested grade definition is in the database
e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
e A JSON response containing information for the requested grade def-

inition is returned.
@GREAT GRADERS
90

Great Graders Software Requirements Document

SR-129 Must have
update(): void
Updates muted and published attributes of a grading definition
Input
e POST request containing the ID of the grade definition and the grade
definition information that the user wishes to change
Precondition

e The grade definition that the user wishes to update is in the database

e The POST request contains all grade definition parameters which the
user wishes to change

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher

Postcondition

e The grade definition is updated with the passed grade definition pa-

rameters

3.1.19.6 Grading Scheme Controller

3.1.19.6.1 Operations

SR-130 Must have
index(): void
For each available grading scheme in Grade Calculation, get the information and

renders it as JSON
Input GET request

Precondition

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
e A JSON response containing information of each grading scheme is re-
turned

SR-131 Should have
show(): void
For a requested grading scheme the information is rendered as JSON
Input GET request containing the ID of the grading scheme
Precondition

e The requested grading scheme is in the database or is a hardcoded
grading scheme
e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
e A JSON response containing information for the requested grading
scheme is returned.

@GREAT GRADERS
91

Great Graders Software Requirements Document

3.1.19.7 Marks Controller

3.1.19.7.1 Operations

SR-132 Must have
import(): void
Imports mark information of the course, from Canvas, into the database
Input POST request
Precondition

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher
Postcondition

e Arequest tothe MARK IMPORTER is made

3.1.20 REST API Controller

3.1.20.1 Operations

SR-133 Should have
import(): void
Imports the provided content of an assignment, into the database
Input POST request
Precondition

e The user that makes the request is authenticated

e The POST request contains at least the following parameters:
- Name
- Assessment type
- Mark Type
- Course ID

Postcondition
e The assignment is stored as an assessment in the Grade Calculation
database.

SR-134 Could have
index(): void
A JSON containing the the SIS IDs and the corresponding marks, final grades and

partial grades for each student within the Course.
Input GET request

Precondition

e The GET request contains a Course ID.
e The user that makes the request is authenticated.
Postcondition
e A JSON containing for each student in the course (with provided
Course ID) the student ID their corresponding marks, partial grades
and final grade.

@GREAT GRADERS
92

Great Graders Software Requirements Document

3.1.20.2 Student View Controller

3.1.20.2.1 Operations

SR-135 Must have
index(): void
All information needed for the student interface is retrieved and returned as JSON
Input GET request
Precondition

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Student
e All the information needed for the student interface has been im-
ported into the database
Postcondition
e A JSON response containing all information needed for the student
view of the student that made the request, is returned

3.1.20.3 Student Controller

3.1.20.3.1 Operations

SR-136 Must have
import(): void
Imports student information of the course, from Canvas, into the database
Input POST request
Precondition

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher
Postcondition

e Arequesttothe STUDENT IMPORTER is made

3.1.20.4 Front-end Controller

3.1.20.4.1 Operations

SR-137 Must have
main_app(): void
Checks the role of the current user and shows the front-end view accordingly
Input GET request
Precondition

e Theuserislogged into Canvas
e The user is authorized to access Grade Calculation
Postcondition
e Shows the appropriate front-end view, either the Teacher or Student
view.

@GREAT GRADERS
93

Great Graders Software Requirements Document

3.1.20.5 Proxy Controller

3.1.20.5.1 Operations

SR-138 Must have
add_grades(): void
Gets a Canvas response and adds the grades to each student listed in the response.

It then returns the response added with the grades as JSON
Input GET request

Precondition

e The user is authorized to access Grade Calculation

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher
Postcondition

e returns the grades of all students in the course as JSON

SR-139 Must have
add_marks(): void
Gets a Canvas response and adds the marks to each student listed in the response.

It then returns the response added with the marks as JSON
Input GET request

Precondition

e Theuser is authorized to access Grade Calculation

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher
Postcondition

e returns the marks of all students in the course as JSON

3.1.20.6 CSV import controller

SR-140 Must have
import(): void
Takes a CSV and passes this on to the function which processes the CSV file
Input POST request
Precondition

e The user is authorized to access Grade Calculation

e The user that initiates the request is logged in into Canvas

e The user that initiates the request is a Teacher
Postcondition

e The marks read from the CSV are shown

e A confirmation button of the read marks is shown

e Upon confirmation:

- The function which processes the CSV is called

3.1.20.7 CSV export controller

@GREAT GRADERS
94

Great Graders Software Requirements Document

SR-141 Must have
export(): void
takes the request for export and passes this on to the function which exports the

CSVfile
Input GET request

Precondition

e The user is authorized to access Grade Calculation
e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Teacher
Postcondition
e Function which exports the grades of the database to CSV is called

3.1.21 Score Structure Validator

3.1.21.1 Operations

SR-142 Must have
validate_each(): void
Checks if the score structure provided is valid
Input The new score structure to be saved
Precondition

e Score structure to be validated is not nil
Postcondition
e Anerrorisreturned if the score structure is invalid

3.1.22 Authorization

3.1.22.1 Operations

SR-143 Must have
authorize(): void
Checks the role of a user
Precondition

e User has a canvas account
Postcondition

¢ |[f the Canvas role is Administrator or Instructor and the permission
listedin[1] section 2.4.1 hold then the user is authorized to the Teacher
view

¢ |f Canvas role is Learner then the user is authorized to the Student
view

e Otherwise an error page is shown.

3.1.23 Routes

@GREAT GRADERS
95

Great Graders Software Requirements Document

3.1.23.1 Attributes

SR-144 Must have
import students route: route
<host>/api/v1/students/import
The path that needs to be called to import the students from Canvas to Grade
Calculation

SR - 145 Must have
import assessments route: route
<host>/api/v1/assessments/import
The path that needs to be called to import the assessments from Canvas to Grade
Calculation

SR-146 Must have
import marks route: route
<host>/api/v1/marks/import
The path that needs to be called to import the marks from Canvas to Grade Calcu-
lation

SR -147 Must have
grade definition route: route
<host>/api/v1/grade-definitions
<host>/api/v1/grade-definitions/"id"
The path that needs to be called to show the information about the grade-
definitions or to show a single grade-definitions

SR -148 Must have
course route: route
<host>/api/v1/course
The path that needs to be called to show the information about the course

SR-149 Must have
student-view route: route
<host>/api/v1/student
The path that needs to be called to show the information required for the student-
view

SR-150 Must have
grading schemes route: route
<host>/api/v1/grading-schemes
<host>/api/v1/grading-schemes/"id"

@GREAT GRADERS
96

Great Graders Software Requirements Document

SR-150 Must have
The path that needs to be called to show the information about the grading
schemes or to show a single grading scheme

3.1.24 Auditlogs

3.1.24.1 Attributes

SR-151 Should have
Action: enum

Represents the type of modification that a user of Grade Calculation can
do: { change, add, remove, recalculate }

3.1.24.2 Operations

SR-152 Should have
createUserAuditLog(): void
This function is called when a single modification to one or more database entries
of the Grade Calculation database is done, in order to store which user did what
kind of modification. Both the old and new entries are stored in the Audit log

database
Input

e action: Action
e entries_to_be_changed: Array database entry
Precondition

e entries_to_be_changed contains at least one database entry
e Auserinitiates arequest to make changes in the database
Postcondition

e entries_to_be_changed is copied to a new array called
changed_entries

e The modification in the Grade Calculation database is done to
changed_entries

e entries_to_be_changedisoverwritten by changed_entries

e A user audit log containing: “action, User that initiates action, en-
try_to_be_changed,changed_entry, CurrentTime"isstored as
immutable entry in the “User Log" table of the Audit Log database.

SR-153 Should have
restoreUserAuditLog(): void
This function is called to restore the state of one user audit log
Input
e audit_log: entry of User Log Table
Precondition

@GREAT GRADERS
97

Great Graders Software Requirements Document

SR-153 Should have

e The user that initiates the request is logged in into Canvas
e The user that initiates the request is a Administrator
Postcondition
¢ The modified entries are reverted to the entries before modification
in the Grade Calculation database.

3.1.25 Notification

3.1.25.1 Operations

SR-154 Should have
notifyStudent(): void
This function is called to notify a student of changes
Input
o student: string
e change: string
Precondition

e The change relevant for the student has been made in the Grade Cal-
culation database
Postcondition
e The student gets notified that a change has been made to the final
score structure, the grading description, or a grade.

SR-155 Should have
notifyUnmuted(): void
Sends a notification to the student stating that their final grade has been

unmuted.
Input

e student: string
Precondition
e The final grade of student has been unmuted
Postcondition
¢ The student gets a notification stating their final grade has been un-
muted.

@GREAT GRADERS
98

Great Graders 41
Chapter 4
° oge °
Requirements Traceability Matrix
41 URDtoSRD
URF SRF Priority
URF1.1 SR-137,SR-147,SR-148,SR-150 Must have
URF1.2 SR-24,SR-50 SR-66, SR-67, SR-68, SR-69, SR-139 Must have
URF1.3 SR-24,SR-50, SR-73,SR-74,SR-75, SR-138, SR-147 Must have
URF1.4 SR-24,SR-50 SR-73,SR-74,SR-75,SR-138,SR-147 Must have
URF1.5 SR-5, SR-6, SR-8, SR-19, SR-20, SR-53, SR-130, SR-150 Must have
URF1.6 SR-5, SR-6, SR-8, SR-19, SR-20, SR-53, SR-130, SR-150 Must have
URF1.7 Won't be implemented Won't have
URF1.8 Won't be implemented Won't have
URF1.9 SR-5,SR-6,SR-23,SR-53,SR-131, SR-123, SR-150 Should have
URF1.10 SR-6,SR-9,SR-10,SR-11,SR-12,SR-14,SR-15,SR-16,SR-17, Must have
SR-18, SR-19,SR-20, SR-21, SR-34, SR-54,SR-142
URF1.11 SR-6,SR-9,SR-10,SR-11,SR-12,SR-14,SR-15,SR-16,SR-17, Should have
SR-18,SR-19,SR-20, SR-21, SR-34, SR-54,SR-124, SR-142
URF1.12 SR-6, SR-10, SR-11, SR-12, SR-14, SR-15, SR-16, SR-17, Should have
SR-18, SR-34,SR-54,SR-123
URF1.13 SR-102,SR-125 Must have
URF1.14 SR-22,SR-126 Could have
URF1.15 SR-3,SR-26,SR-28,SR-74,SR-75,SR-76,SR-121,SR-129 Should have
URF1.16 SR-3,SR-25,SR-27,SR-74,SR-75,SR-76,SR-121,SR-129 Should have
URF1.17 SR-3,SR-26,SR-28,SR-74,SR-75,SR-76,SR-121,SR-129 Could have
URF1.18 SR-3,SR-25,SR-27,SR-74,SR-75,SR-76,SR-121,SR-129 Could have
URF1.19 SR-10,SR-14,SR-56,SR-57,SR-117,SR-118,SR-119 Must have
URF1.20 SR-9,SR-19,SR-20,SR-55 Should have
URF1.21 SR-32,SR-102,SR-125 Could have

@GREAT GRADERS
99

Great Graders Software Requirements Document

URF SRF Priority
URF1.22 SR-21,SR-142 Could have
URF1.23 SR-31 Could have
URF1.24 SR-31 Could have
URF1.25 SR-31 Could have
URF1.26 SR-31,SR-63,SR-114 Should have
URF1.27 SR-31,SR-64,SR-114,SR-136 Should have
URF1.28 SR-31,SR-63,SR-114,SR-136 Should have
URF1.29 SR-31,SR-64,SR-114,SR-136 Should have
URF1.30 SR-31,SR-63,SR-114,SR-136 Should have
URF1.31 SR-31,SR-64,SR-114,SR-136 Should have
URF1.32 SR-18,SR-92 Could have
URF1.33 SR-18,SR-92 Could have
URF1.34 SR-143 Must have
URF1.35 Won't be implemented Won't have
URF1.36 SR-1, SR-2, SR-3, SR-4, SR-65, SR-135, SR-136, SR-137, Must have
SR-149
URF1.37 SR-1,SR-2,SR-68 SR-69,SR-135,SR-137,SR-149 Must have
URF1.38 SR-1, SR-3, SR-73, SR-75, SR-127, SR-128, SR-135, SR-137, Should have
SR-149
URF1.39 SR-1, SR-3, SR-73, SR-75, SR-127, SR-128, SR-135, SR-137, Must have
SR-149
URF1.40 SR-1, SR-53, SR-135, SR-105, SR-131, SR-137, SR-144, Should have
SR-149
URF1.41 SR-1, SR-55, SR-105, SR-123, SR-137, SR-135, SR-144, Should have
SR-149
URF142 SR-1SR-3,SR-77,SR-154 Should have
URF143 SR-1,SR-3,SR-155, Should have
URF1.44 Won't be implemented Won't have
URF1.45 SR-36,SR-49,SR-137,SR-143 Could have
URF1.46 SR-68,SR-69,SR-73,SR-75,SR-138,SR-139,SR-143 Could have
URF1.47 SR-36,SR-47,SR-52,SR-54,SR-123,SR-143, Could have

URF148 SR-36, SR-38, SR-39, SR-40, SR-41, SR-44, SR-45, SR-46, Could have
SR-47,SR-52, SR-54, SR-124, SR-142

URF149 SR-36, SR-38, SR-39, SR-40, SR-41, SR-44, SR-45, SR-46, Could have
SR-47,SR-52,SR-54, SR-124, SR-142,

URF1.50 SR-35,SR-36,SR-53,SR-123 Could have
URF1.51 SR-35,SR-36,SR-37,SR-38,SR-39,SR-53,SR-124 Could have
URF1.52 SR-35,SR-36,SR-37,SR-38,SR-39,SR-53,SR-124 Could have
URF1.53 Won't be implemented Won't have
URF1.54 Won't be implemented Won't have

@GREAT GRADERS
100

Great Graders

Software Requirements Document

URF SRF Priority
URF2.1 SR-58 Must have
URF2.2 SR-59 Should have
URF2.3 SR-58,SR-70 Must have
URF2.4 SR-58,SR-70 Must have
URF2.5 SR-69 Must have
URF2.6 SR-69 Must have
URF2.7 SR-69 Must have
URF2.8 SR-69 Must have
URF2.9 SR-2,SR-66,SR-69,SR-119,SR-121 Should have
URF2.10 SR-30,SR-60,SR-61,SR-62,SR-66,SR-69,SR-72,SR-121 Should have
URF2.11 SR-79,SR-80 Must have
URF2.12 SR-79,SR-80 Must have
URF2.13 SR-8,SR-37,SR-75,SR-93,SR-150 Must have
URF2.14 SR-10,SR-14,SR-40,SR-44,SR-71,SR-84 Must have
URF2.15 SR-14,SR-44,SR-84 Must have
URF2.16 SR-10,SR-14,SR-40,SR-44,SR-71,SR-85 Must have
URF2.17 SR-14,SR-44,SR-85 Must have
URF2.18 SR-10,SR-14,SR-40,SR-44,SR-71,SR-88 Should have
URF2.19 SR-14,SR-44,SR-88 Should have
URF2.20 SR-10,SR-14, SR-40, SR-44,SR-71,SR-90 Should have
URF2.21 SR-14,SR-44,SR-90 Should have
URF2.22 SR-10,SR-14,SR-40,SR-44,SR-71,SR-91 Should have
URF2.23 SR-14,SR-44,SR-91 Should have
URF2.24 SR-14,SR-10, SR-40,SR-44,SR-71,SR-86 Should have
URF2.25 SR-14,SR-44,SR-86 Should have
URF2.26 SR-10,SR-14,SR-40,SR-44,SR-71, SR-87 Should have
URF2.27 SR-14,SR-44,SR-87 Should have
URF2.28 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81, Could have
SR-82,SR-83,SR-91
URF2.29 SR-13,SR-14,SR-43,SR-44,SR-81, SR-82,SR-83,SR-91 Could have
URF2.30 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81, Could have
SR-82, SR-83, SR-90
URF2.31 SR-13,SR-14,SR-43,SR-44,SR-81,SR-82,SR-83,SR-90 Could have
URF2.32 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81, Could have
SR-82, SR-83,SR-89
URF2.33 SR-13,SR-14,SR-43,SR-44,SR-81, SR-82, SR-83, SR-89 Could have
URF2.34 SR-10, SR-13, SR-14, SR-40, SR-43, SR-44, SR-71, SR-81, Could have

SR-82, SR-83, SR-88

101

@GREAT GRADERS

Great Graders

Software Requirements Document

URF SRF Priority
URF2.35 SR-14,SR-13,SR-43,SR-44,SR-81,SR-82,SR-83, SR-88 Could have
URF2.36 SR-10,SR-14,SR-40,SR-44,SR-85 Should have
URF2.37 SR-10, SR-14, SR-40, SR-44,SR-85 Could have
URF2.38 SR-18,SR-48,SR-92 Could have
URF2.39 SR-10,SR-14,SR-18, SR-40, SR-44, SR-48,SR-71, SR-92 Could have
URF2.40 Won't be implemented Won't have
URF2.41 Won't be implemented Won't have
URF2.42 Won't be implemented Won't have
URF2.43 Won't be implemented Won't have
URF2.44 SR-79,SR-80 Must have
URF2.45 SR-79,SR-80 Must have
URF2.46 SR-8,SR-37,SR-75,SR-93,SR-150 Must have
URF2.47 SR-14,SR-44,SR-84 Must have
URF2.48 SR-14,SR-44,SR-85 Must have
URF2.49 SR-14,SR-44,SR-88 Should have
URF2.50 SR-14,SR-44,SR-90 Should have
URF2.51 SR-14,SR-44,SR-91 Should have
URF2.52 SR-14,SR-44,SR-86 Should have
URF2.53 SR-14,SR-44,SR-87 Should have
URF2.54 SR-13,SR-14,SR-44,SR-43,SR-83,SR-91 Could have
URF2.55 SR-13,SR-14,SR-44,SR-43,SR-83, SR-90 Could have
URF2.56 SR-13,SR-43,SR-83,SR-89 Could have
URF2.57 SR-13,SR-43,SR-83, SR-88 Could have
URF2.58 SR-10, SR-14, SR-40, SR-44,SR-85 Should have
URF2.59 SR-10,SR-14, SR-40, SR-44,SR-85 Could have
URF2.60 SR-18,SR-48,SR-92 Could have
URF2.61 SR-18,SR-48,SR-92 Could have
URF2.62 Won't be implemented Won't have
URF2.63 Won't be implemented Won't have
URF2.64 Won't be implemented Won't have
URF2.65 Won't be implemented Won't have
URF2.66 SR-73,SR-74,SR-75 Must have
URF2.67 SR-102,SR-148 Should have
URF2.68 SR-102,SR-148 Should have
URF2.69 SR-102,SR-139 Should have
URF2.70 SR-75 Must have

102

@GREAT GRADERS

Great Graders

Software Requirements Document

URF SRF Priority
URF2.71 SR-75 Must have
URF2.72 SR-8,SR-37,SR-75,SR-93,SR-94 Could have
URF2.73 SR-8,SR-37,SR-75,SR-93,SR-95 Could have
URF2.74 SR-8,SR-37,SR-75,SR-93,SR-96 Must have
URF2.75 SR-8,SR-37,SR-75,SR-93,SR-101 Must have
URF2.76 SR-8,SR-37,SR-75,SR-93,SR-97 Could have
URF2.77 SR-8,SR-37,SR-75,SR-93,SR-98 Could have
URF2.78 SR-8,SR-37,SR-75,SR-93,SR-99 Could have
URF2.79 SR-8,SR-37,SR-75,SR-93,SR-100 Could have
URF2.80 Won't be implemented Won't have
URF2.81 SR-73,SR-74 Must have
URF2.82 SR-93,SR-102,SR-148 Should have
URF2.83 SR-93,SR-102,SR-148 Should have
URF2.84 SR-74,SR-102,SR-138 Should have
URF2.85 SR-75 Must have
URF2.86 SR-75 Must have
URF2.87 SR-8,SR-37,SR-75,SR-93,SR-94 Must have
URF2.88 SR-8,SR-37,SR-75,SR-93,SR-95 Must have
URF2.89 SR-8,SR-37,SR-75,SR-93,SR-97 Could have
URF2.90 SR-8,SR-37,SR-75,SR-93,SR-98 Could have
URF2.91 SR-8,SR-37,SR-75,SR-93,SR-99 Could have
URF2.92 SR-8,SR-37,SR-75,SR-93,SR-100 Could have
URF2.93 Won't be implemented Won't have
URF2.94 SR-16,SR-17,SR-47,SR-71,SR-90 Must have
URF2.95 SR-16,SR-17,SR-47,SR-71,SR-90 Should have
URF2.96 SR-17,SR-47,SR-71,SR-90 Should have
URF2.97 SR-16,SR-17,SR-47,SR-71,SR-84 Should have
URF2.98 SR-14,SR-17,SR-47,SR-69,SR-71,SR-90 Must have
URF2.99 SR-12,SR-42,SR-59,SR-124 Should have
URF2.100 SR-78,SR-102,SR-138 Should have
URF2.101 SR-10,SR-12,SR-40,SR-42,SR-59,SR-102 Should have
URF2.102 SR-14,SR-16,SR-44,SR-46,SR-59,SR-102 Should have
URF2.103 SR-10,SR-12,SR-40,SR-42,SR-59, SR-102 Could have
URF2.104 SR-10,SR-40,SR-42,SR-59,SR-102 Could have
URF2.105 SR-102,SR-103 Could have
URF2.106 SR-102,SR-103 Could have

103

@GREAT GRADERS

Great Graders Software Requirements Document
URF SRF Priority
URF2.107 SR-102,SR-103 Could have
URF3.1 SR-104, SR-108, SR-109, SR-112, SR-106, SR-107, SR-113, Must have

SR-117,SR-132,SR-145,SR-146
URF3.2 SR-104, SR-106, SR-107, SR-108, SR-109, SR-113, SR-117, Must have

SR-132,SR-145,SR-146
URF3.3 SR-109 Should have
URF3.4 SR-109 Should have
URF3.5 SR-109 Should have
URF3.6 SR-109 Should have
URF3.7 SR-104 , SR-106, SR-107, SR-108, SR-109, SR-113, SR-117, Could have

SR-132,SR-145,SR-146
URF3.8 SR-110,SR-111,SR-120, SR-140 Should have
URF3.9 SR-110,SR-111 Should have
URF3.10 SR-110,SR-111 Should have
URF3.11 SR-111 Could have
URF3.12 SR-133 Should have
URF3.13 SR-140 Could have
URF3.14 SR-140 Could have
URF3.15 SR-64,SR-73,SR-75,SR-116,SR-141,SR-143, Should have
URF3.16 SR-64,SR-73,SR-75,SR-116,SR-141,SR-143, Should have
URF3.17 SR-64,SR-68,SR-69,SR-116,SR-143,SR-141 Should have
URF3.18 SR-64,SR-73,SR-75,SR-116,SR-143,SR-141 Could have
URF3.19 SR-64,SR-73,SR-75,SR-116,SR-141,SR-143, Could have
URF3.20 SR-64,SR-68,SR-69,SR-116,SR-141,SR-143 Could have
URF3.21 SR-134 Could have
URF3.22 SR-134 Could have
URF3.23 SR-134 Could have
URF3.24 SR-116 Should have
URF3.25 SR-110,SR-111 Should have
URF3.26 Won't be implemented Won't have
URF3.27 Won't be implemented Won't have
URF4.1 SR-151,SR-152 Should have
URF4.2 SR-124,SR-151,SR-152, Should have
URF4.3 SR-124,SR-151,SR-152, Should have
URF4.4 SR-152 Should have
URF4.5 SR-152 Should have
URF4.6 SR-152 Should have
URF4.7 SR-152 Should have

104

@GREAT GRADERS

Great Graders

Software Requirements Document

URF SRF Priority
URF4.8 Won't be implemented Won't have
URF4.9 SR-153 Won't have
URF4.10 SR-152 Should have
URF4.11 SR-152 Should have
URF4.12 SR-122,SR-33 Should have
URF4.13 SR-51,SR-122 Could have
URF4.14 Won't be implemented Won't have
URF4.15 Won't be implemented Won't have
URF4.16 Won't be implemented Won't have
URF5.1 SR-110,SR-111,SR-132 Should have
URF5.2 Won'’t be implemented Won't have
URF5.3 Won't be implemented Won't have
URF5.4 Won't be implemented Won't have
URF5.5 Won't be implemented Won't have
URF5.6 Won't be implemented Won't have
URF5.7 Won't be implemented Won't have
URF5.8 Won't be implemented Won't have
URF5.9 Won't be implemented Won't have
URF5.10 Won't be implemented Won't have
URF5.11 Won't be implemented Won't have
URF5.12 SR-7,SR-124,SR-142 Could have
URF5.13 Won't be implemented Won't have
URFé6.1 This URF has been moved to URC3.15 Must have
URF6.2 This URF has been moved to URC3.16 Must have
URFé6.3 SR-7,SR-124 Could have
URF6.4 Won't be implemented Won't have
URFé6.5 Won't be implemented Won't have
URF6.6 Won't be implemented Won't have
URFé6.7 Won't be implemented Won't have
URFé6.8 Won't be implemented Won't have
URF6.9 Won't be implemented Won't have

105

@GREAT GRADERS

Great Graders

Software Requirements Document

4.2 SRDtoURD

SRF URF Priority
SR-1 URF1.36, URF1.37, URF1.38, URF1.39, URF1.40, URF1.41, Musthave
URf1.42, URF1.43
SR-2 URF1.36, URF1.37, URF2.9 Must have
SR-3 URF1.15, URF1.16, URF1.17, URF1.18, URF1.36, URF1.38, Must have
URF1.39,URF1.42, URF1.43
SR-4 URF1.36 Must have
SR-5 URF1.5, URF1.6, URF1.9 Must have
SR-6 URF1.5,URF1.6,URF1.9,URF1.10,URF1.11, URF1.12 Must have
SR-7 URF5.12, URF6.3 Could have
SR-8 URF1.5, URF1.6, URF2.13, URF246, URF2.72, URF2.73, Musthave
URF2.74, URF2.75, URF2.76, URF2.77, URf2.78, URf2.79,
URF2.87,URF2.88, URF2.89, URF2.90, URF2.91, URF2.92
SR-9 URF1.10,URF1.11, URF1.20 Should have
SR-10 URF1.10, URF1.11, URF1.12, URF1.19, URF2.14, URF2.16, Must have
URF2.18, URF2.20, URF2.22, URF2.24, URF2.26, URF2.28,
URF2.30, URF2.32, URF2.34, URF2.36, URF2.37, URF2.39,
URF2.58,URF2.59, URF2.101, URF2.103, URF2.104
SR-11 URF1.10,URF1.11, URF1.12 Should have
SR-12 URF1.10, URF1.11, URF1.12, URF2.99, URF2.101, URF2.103, Should have
URF2.104
SR-13 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33, Could have
URF2.34,URF2.35, URF2.54, URF2.55, URF2.56, URF2.57
SR-14 URF1.10, URF1.11, URF1.12, URF1.19, URF2.14, URF2.15, Musthave
URF2.16, URF2.17, URF2.18, URF2.19, URF2.20, URF2.21,
URF2.22, URF2.23, URF2.24, URF2.25, URF2.26, URF2.27,
URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33,
URF2.34, URF2.35, URF2.36, URF2.37, URF2.39, URF2.47,
URF2.48, URF2.49, URF2.50, URF2.51, URF2.52, URF2.53,
URF2.54, URF2.55, URF2.58, URF2.59, URF2.98, URF2.102
SR-15 URF1.10,URF1.11, URF1.12 Should have
SR-16 URF1.10, URF1.11, URF1.12, URF2.94, URF2.95, URF2.97, Shouldhave
URF2.102
SR-17 URF1.10, URF1.11, URF1.12, URF2.94, URF2.95, URF2.96, Musthave
URF2.97,URF2.98
SR-18 URF1.10, URF1.11, URF1.12, URF1.32, URF1.33, URF2.38, Couldhave
URF2.39, URF2.60, URF2.61
SR-19 URF1.5, URF1.6,URF1.10, URF1.11, URF1.20 Must have
SR-20 URF1.5, URF1.6,URF1.10, URF1.11, URF1.20 Must have
SR-21 URF1.10,URF1.11, URF1.22 Could have
SR-22 URF1.14 Could have
SR-23 URF1.9 Must have

106

@GREAT GRADERS

Great Graders

Software Requirements Document

SRF URF Priority
SR-24 URF1.2,URF1.3,URF1.4 Must have
SR-25 URF1.16,URF1.18 Should have
SR-26 URF1.15,URF1.17 Should have
SR-27 URF1.16,URF1.18 Should have
SR-28 URF1.15,URF1.17 Should have
SR-29 URF1.23,URF1.24, URF1.25 Could have
SR-30 URF2.10 Should have
SR-31 URF1.26,URF1.27, URF1.28, URF1.29, URF1.30, URF1.31 Should have
SR-32 URF1.21 Could have
SR-33 URF4.12 Should have
SR-34 URF1.10,URF.1.11, URF1.12
SR-35 URF1.50,URF1.51,URF1.52 Could have
SR-36 URF1.45, URF1.47, URF1.48, URF1.49, URF1.50, URF1.51, Couldhave
URF1.52
SR-37 URF1.51, URF1.52, URF2.13, URF2.46, URF2.72, URF2.73, Could have
URF2.74, URF2.75, URF2.76, URF2.77, URF2.78, URF2.79,
URF2.87,URF2.88, URF2.89, URF2.90, URF2.91, URF2.92
SR-38 URF1.48,URF1.49, URF1.51, URF1.52 Could have
SR-39 URF1.48,URF1.49, URF1.51, URF1.52 Could have
SR-40 URF1.48, URF1.49, URF2.14, URF2.16, URF2.18, URF2.20, Could have
URF2.22, URF2.24, URF2.26, URF2.28, URF2.30, URF2.32,
URF2.34, URF2.36, URF2.37, URF2.39, URF2.58, URF2.59,
URF2.101, URF2.103, URF2.104
SR-41 URF1.48, URF1.49 Could have
SR-42 URF1.48,URF1.49, URF2.99, URF2.101, URF2.103, URF2.104 Could have
SR-43 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33, Couldhave
URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57
SR-44 URF1.48, URF1.49, URF2.14, URF2.15, URF2.16, URF2.17, Could have
URF2.18,URF2.19, URF2.20, URF2.21, URF2.22, URF2.23,
URF2.24, URF2.25, URF2.26, URF2.27, URF2.28, URF2.29,
URF2.30, URF2.31, URF2.32, URF2.33, URF2.34, URF2.35,
URF2.36, URF2.37, URF2.39, URF2.47, URF2.48, URF2.49,
URF2.50, URF2.51, URF2.52, URF2.53, URF2.54, URF2.55,
URF2.58, URF2.59, URF2.102
SR-45 URF1.48, URF1.49 Could have
SR-46 URF1.48, URF1.49, URF2.102 Could have
SR-47 URF1.47, URF1.48, URF1.49, URF2.94, URF2.95, URF2.96, Couldhave
URF2.97,URF2.98
SR-48 URF2.38, URF2.39, URF2.60, URF2.61 Could have
SR-49 URF1.45 Could have
SR-50 URF1.2,URF1.3,URF1.4 Could have

107

@GREAT GRADERS

Great Graders Software Requirements Document

SRF URF Priority
SR-51 URF4.13 Could have
SR-52 URF1.47,URF1.48,URF1.49 Could have
SR-53 URF1.5, URF1.6, URF1.9, URF1.40, URF1.50, URF1.51, Musthave
URF1.52

SR-54 URF1.10,URF1.11,URF1.12, URF1.47,URF1.48, URF1.49 Must have
SR-55 URF1.20,URF1.41 Should have
SR-56 URF1.19 Must have
SR-57 URF1.19 Must have
SR-58 URF2.1,URF2.3,URF2.4 Must have
SR-59 URF2.2,URF2.99,URF2.101, URF2.102, URF2.103,URF2.104 Must have
SR-60 URF2.10 Should have
SR-61 URF2.10 Should have
SR-62 URF2.10 Should have
SR-63 URF1.26,URF1.28, URF1.30 Should have

SR-64 URF1.27, URF1.29, URF1.31, URF3.15, URF3.16, URF3.17, Should have
URF3.18, URF3.19, URF3.20

SR-65 URF1.36 Must have
SR-66 URF1.2, URF2.9,URF2.10 Must have
SR-67 URF1.2 Must have

SR-69 URF1.2, URF1.37, URF1.46, URF2.5, URF2.6, URF2.7, URF2.8, Must have
URF2.9,URF2.10, URF2.98, URF3.17, URF3.20

SR-70 URF2.3,URF24 Must have

SR-71 URF2.14, URF2.16, URF2.18, URF2.20, URF2.22, URF2.24, Musthave
URF2.26, URF2.28, URF2.30, URF2.32;URF 2.34, URF2.39,
URF2.94, URF2.95, URF2.96, URF2.97, URF2.98

SR-72 URF2.10 Should have

SR-73 URF1.3, URF1.4, URF1.38, URF1.39, URF1.46, URF2.66, Musthave
URF2.81, URF3.15, URF3.16, URF3.18, URF3.19

SR-75 URF1.3, URF1.4, URF1.15, URF1.16, URF1.17, URF1.18, Musthave
URF1.38, URF1.39, URF1.46, URF2.13, URF2.46, URF2.66,
URF2.70, URF2.71, URF2.72,URF2.73, URF2.74, URF2.75,
URF2.76, URF2.77, URF2.78, URF2.79, URF2.85, URF2.86,
URF2.87, URF2.88, URF2.89, URF2.90, URF2.91, URF2.92,
URF3.15,URF3.16, URF3.18, URF3.19

SR-76 URF1.15,URF1.16,URF1.17,URF1.18 Should have
SR-77 URF1.42 Should have
SR-78 URF2.100 Should have
SR-79 URF2.11,URF2.12, URF2.44, URF2.45 Must have
SR-80 URF2.11,URF2.12,URF2.44, URF2.45 Must have

SR-81 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33, Could have
URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57

@GREAT GRADERS
108

Great Graders Software Requirements Document

SRF URF Priority

SR-82 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33, Could have
URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57

SR-83 URF2.28, URF2.29, URF2.30, URF2.31, URF2.32, URF2.33, Could have
URF2.34, URF2.35, URF2.54, URF2.55, URF2.56, URF2.57

SR-84 URF2.14,URF2.15 URF2.47,URF2.97 Must have

SR-85 URF2.16, URF2.17, URF2.36, URF2.37, URF2.48, URF2.58, Musthave
URF2.59

SR-86 URF2.24,URF 2.25, URF2.52 Should have

SR-87 URF2.26,URF2.27,URF2.53 Should have

SR-88 URF2.18,URF2.19,URF2.34, URF2.35, URF2.49, URF 2.57 Should have

SR-89 URF2.32,URF3.33,URF2.56 Should have

SR-90 URF2.20, URF2.21, URF2.30, URF2.31, URF2.50, URF2.55, Should have
URF2.94,URF2.95, URF2.96, URF2.98

SR-91 URF2.22,URF2.23,URF2.28,URF2.29,URF2.51, URF2.54 Should have
SR-92 URF1.32,URF1.33, URF2.38, URF2.39, URF2.60, URF2.61 Could have

SR-93 URF2.13, URF2.46, URF2.72, URF2.73, URF2.74, URF2.75, Musthave
URF2.76, URF2.77, URF2.78, URF2.79, URF2.82, URF2.83,
URF2.87,URF2.88, URF2.89, URF2.90, URF2.91, URF2.92

SR-94 URF2.72,URF2.87 Must have
SR-95 URF2.73,URF2.88 Must have
SR-96 URF2.74 Must have
SR-97 URF2.76,URF2.89 Must have
SR-98 URF2.77,URF2.90 Must have
SR-99 URF2.78,URF2.91 Must have
SR-100 URF2.79,URF2.92 Must have
SR-101 URF2.75 Must have

SR-102 URF1.13, URF1.21, URF2.67, URF2.68, URF2.69, URF2.82, Musthave
URF2.83, URF2.84, URF2.100, URF2.101, URF2.102,
URF2.103, URF2.104, URF2.105, URF2.106, URF2.107

SR-103 URF2.105,URF2.106, URF2.107 Could have
SR-104 URF3.1,URF3.2,URF3.7 Must have
SR-105 URF1.40,URF1.41 Must have
SR-106 URF3.1,URF3.2,URF3.7 Must have
SR-107 URF3.1,URF3.2,URF3.7 Must have
SR-108 URF3.1,URF3.2,URF3.7 Must have
SR-109 URF3.1,URF3.2,URF3.3, URF3.4, URF 3.5, URF3.6, URF3.7 Must have
SR-110 URF3.8,URF3.9,URF3.10, URF3.25, URF5.1 Should have
SR-111 URF3.8,URF3.9,URF3.10, URF3.11, URF3.25, URF5.1 Should have
SR-112 URF3.1 Must have

@GREAT GRADERS
109

Great Graders

Software Requirements Document

SRF URF Priority
SR-113 URF3.1,URF3.2,URF3.7 Must have
SR-114 URF1.26,URF1.27,URF1.28,URF1.29, URF1.30, URF1.31 Must have
SR-115 URF1.26,URF1.27,URF1.28, URF1.29, URF1.30, URF1.31 Must have
SR-116 URF3.15,URF3.16,URF3.17,URF3.24 Should have
SR-117 URF1.19,URF3.1, URF3.2, URF3.7 Must have
SR-118 URF1.19 Must have
SR-119 URF1.19,URF2.9 Must have
SR-120 URF3.8,URF5.2 Should have
SR-121 URF1.15,URF1.16,URF1.17,URF1.18, URF2.9, URF2.10 Must have
SR-122 URF4.12,URF4.13 Could have
SR-123 URF1.9,URF1.12,URF1.41,URF1.47,URF1.50 Must have
SR-124 URF1.11, URF1.48, URF1.49, URF1.50, URF1.52, URF2.99, Must have
URF4.2, URF4.3,URF5.12, URF6.3
SR-125 URF1.13,URF1.21 Must have
SR-126 URF1.14 Could have
SR-127 URF1.38,URF1.39 Must have
SR-128 URF1.38,URF1.39 Must have
SR-129 URF1.15,URF1.16,URF1.17,URF1.18 Must have
SR-130 URF1.5,URF1.6 Must have
SR-131 URF1.9,URF1.40 Should have
SR-132 URF3.1,URF3.2, URF3.7,URF5.1 Must have
SR-133 URF3.12 Should have
SR-134 URF3.21,URF3.22,URF3.23 Could have
SR-135 URF1.36,URF1.37,URF1.38, URF1.39, URF1.40, URF1.41 Must have
SR-136 URF1.26, URF1.27, URF.128, URF1.29, URF1.30, URF1.31, Must have
URF1.36
SR-137 URF1.1, URF1.36, URF1.37, URF1.38, URF1.39, URF1.41, Musthave
URF1.45
SR-138 URF1.3,URF1.4,URF1.46, URF2.84, URF2.100 Must have
SR-139 URF1.2,URF1.46,URF2.69 Must have
SR-140 URF3.8,URF3.13,URF3.14 Must have
SR-141 URF3.15,URF3.16, URF3.17, URF3.18, URF3.19, URF3.20 Must have
SR-142 URF1.10,URF1.11,URF1.22,URF1.48, URF1.49 Must have
SR-143 URF1.34, URF1.45, URF1.46, URF1.47, URF3.15, URF3.16, Musthave
URF3.17,URF3.18, URF3.19, URF3.20
SR-144 URF1.40,URF1.41 Must have
SR-145 URF3.1,URF3.2,URF3.7 Must have
SR-146 URF3.1,URF3.2,URF3.7 Must have

110

@GREAT GRADERS

Great Graders Software Requirements Document

SRF URF Priority
SR-147 URF1.1,URF1.3,URF1.4 Must have
SR-148 URF1.1,URF2.67,URF2.68, URF2.82, URF2.83 Must have
SR-149 URF1.36,URF1.37,URF1.38, URF1.39, URF1.40, URF1.41 Must have
SR-150 URF 1.1,URF1.5,URF1.6,URF1.9,URF2.13,URF2.46, URF4.10, Must have
URF4.11

SR-151 URF4.1, URF4.2, URF4.3 Should have
SR-152 URF4.1,URF4.2,URF4.3, URF4.4, URF4.5, URF4.6, URF4.7 Should have
SR-153 URF4.9 Should have
SR-154 URF1.42,URF1.43 Should have

SR-155 URF1.43

@GREAT GRADERS
111

Great Graders Al

Appendix A

User Interface - Student

Given the fact that Grade Calculation is not a separate application but an LTI plugin embed-
ded into Canvas, the designs are confined to one page with multiple tabs. Furthermore, Can-
vas handles all authentication and login matters. Thus, these aspects are not considered in
the designs. Transitions between the different views can be found in Appendix C.

Itis also important to note that in the context of the user interface, “Grading Structure" refers
to both the grading scheme and the final score structure together. This term is not defined in
the definitions due to the fact that it is only used to enhance the user experience. Within the
documentation produced for Grade Calculation by Great Graders, the grading scheme and
the final score structure will always be separate entities.

A.1 Student View

When a student logs into Canvas and enters a course page, then along with the provided tabs
of Canvas, the tab called Grade Calculation is also shown for courses for which have Grade
Calculation enabled. Selecting this tab provides the student access to the overview of their
individual grades for the specific course. At the top of the page the name of the student is
shown. Below that, the name of the course along with when the course is being taught, are
displayed.

After that, a highlighted box is shown. This box contains the description of the “Grading Struc-
ture" as well as the used grading scheme. In more detail, in the subsection called “Description
of the Grading Structure", the student can find an explanation of how the final grade is calcu-
lated and which components it consists of. Moreover, in the section “Used grading scheme”,
the way the final grade is represented is shown.

The main focus of the Student Interface is the table in the center. For every assessment, the
names of the assessments, their weight, the calculation method, the date of change, and fi-
nally the result the student attained for this assessment are shown. More precisely, in this
table the student can find information not only for individual assessments, but also for sets of
assessments that are defined in the final score structure. In addition, since the set of assess-
ments are collapsible menus, they give the option to either show only information for the set
as a whole or, if expanded, to also show information for each of the individual assessments it
contains.

@GREAT GRADERS
112

Great Graders Software Requirements Document

= Grade Calculation Wireframes

Home Grades for E.C.M Claassen

Course: 2WAB0 (2014-4) Complex Analysis
Assignments
Discussions Description of Grading Structure

. The final grade will consist of an outweighed average between the score of the final examination homework assignments. There is
GradeCalculation @ also a mandatory Homework 1 which must be completed to pass the course.
Used grading scheme
1-10 rounding to nearest integer

Name Weight Calculation Method Date of Change Result
- Homework Quartile A 20% Weighted average 2014-12-24 7.2
StudyCoach
developmen Assignment Week 1 20% 6
t
Assignment Week 2 20% 6
Assignment Week 3 60% 8
+ Selft tests 25% Maximum 2014-12-24 55
Practicum basics 5% 2014-12-24
- Written Examination 50% Maximum 2014-12-24 7
Final Exam 6
® Final Exam Attempt 2 7
Practice Exam 0%
Final Grade 100% 2014-12-24 5

Figure A.1: Student Interface: Overview page

Finally, in the top right corner of the Student View there is an Export button. Clicking this
button allows the student to obtain a CSV file containing their marks, partial grades, and final
grades as shown in the table.

@GREAT GRADERS
113

Great Graders B.1

Appendix B

User Interface - Teacher

B.1 “Grading Structure" view

= Grade Calculation Wireframes

@ Home GradeCalculation
Account
=R Grading Structure Student Grades
& Assignments
Dashboard

Discussions Select grading scheme

Courses GradeCalculation
1410 g torearest ter Open formatn

ez
Calculate final score

Calendar

&

Inbox Component Weight Max. score Calculation Min. requirement Options

StudyCoach = Final Score 100% 10 e 55 [}
developmen ®
t + Selft tests 25% 10 Weighted Average 55
Practicum basics 5% 5 - 55 @
1 Delete
Formulas 5% 10 - 50 2 Edit
© Multiple Attempts
Practice exam 12% 10 - - [}
= Homework 20% 5 Minimum 55 ®
+ Add component
Assignment Week 1 25% 10 - - @ Delete
2 Edit
Assignment Week 2 25% 10 - 55 ®
+ Weekly presentation 50% 10 Maximum - ®

Description of Grading Structure #
The final grade will consist of an outweighed average between the score of the final examination homework assignments. There is
also a mandatory Homework 1 which must be completed to pass the course.

Submission of Grading Structure

Validate and Submi

Figure B.1: “Grading Structure" view: Overview Page

GREAT GRADERS

114

Great Graders Software Requirements Document

When a teacher with the permissions defined in Section 2.4.1 of the URD [1] logs onto Canvas
and enters a course page, then along with the provided tabs of Canvas, the tab called Grade
Calculation is also shown. Selecting this tab provides the teacher access to the Teacher inter-
face for the specific course. If a teacher does not have the permission defined in the Section
2.4.1 of the URD, an error page is shown. From now on, it is assumed that the teacher has the
necessary permission.

After obtaining access to the Teacher Interface, the “Grading Structure" tab is shown to the
teacher. At the top of the page, the teacher can select, via a drop-down menu, the grading
scheme of their choosing. For example, in the picture above, the scheme selected is the “1-10
rounding to nearest integer", which is the default grading scheme selected by Grade Calcula-
tion. Two more items that can also be found at the top of the page are the “Open Information"
and “Save Progress" buttons. By clicking the “Open Information" button a information page
is displayed, appearing from the right-side of the screen. This page contains information to
help the teacher interact with Grade Calculation. Secondly, by clicking on the “Save progress"
button, the teacher can save their progress when creating the grading structure.

At the center of the screen there is a table that displays the components of the final score
structure and their definitions. The teacher or administrator can see the different sets of as-
sessments as well as the individual assessments that the sets are composed of. This table
contains six columns, namely “Component", “Weight", “Max. score", “Calculation”, “Min. re-
quirement", and “Options". The “Component" column holds the name of the assessment or
assessment set. The “Weight" column contains a percentage which denotes the extent to
which the assessment or assessment set contributes to the final score. These weights are
only shown when the calculation method is “Weighted average". In this case, it is imperative
to know the extent to which the children of an assessment set influence the score of the as-
sessment set. For all other calculation methods, the weight is not necessary in order to gain
a full understanding of the composition of the assessment set. For example, if the calculation
method is “Unweighted average" then trivially all children of the assessment set will have an
equal weight which sums up to 100.

Inthird place, the column “Max. score" holds the maximum score that one could attain for this
assessment. For example, if the assessment has a grading type of “percentage”, then the max-
imum score would be 100. Then, the “Calculation" column is used to display the calculation
method for determining the score for the assessment set. As individual assessments cannot
have a calculation method on their own, this column is always left empty for them. Further-
more, the “Min. requirement" column displays a value, within the calculation range of the
assessment. This value represents the minimum score that the student must attain in order
to pass the course. If no minimum requirement is necessary for assessment, this columniis left
empty. Lastly, the “Options" column contains a button, which when selected, shows a menu.
Both an individual assessment and a set of assessments have this option button, however, the
contents in the menu differ between the two types. For an assessment sets, the menu allows
one to add a new component, to delete the whole set (including its children), and to edit the
information of the assessment set in the other columns. For an individual assessments, the
available options are to edit the the information of the assessment in the other columns, to
delete the assessment, and to create multiple attempts. Please see Appendix B.1.5 for fur-
ther clarification of the create multiple attempts option.

Below the table, there is the “Description of the Grading Structure". By clicking on the edit
button next to the title, the teacher can describe how the final grade will be calculated. The
information entered will also be shown to the students in the “Student Interface". Finally, at

@GREAT GRADERS
115

Great Graders Software Requirements Document

the bottom of the page there is a button called “Validate and Submit". If the grading structure
is incomplete, clicking this button will produce a warning, mentioning that the grading struc-
tureisinvalid and what needs to be changed. However, if the final score structure and grading
scheme are valid, clicking this button will make the changes made in the grading structure of-
ficial by saving it to the database.

B.1.1 Information Button

= Grade Calculation Wireframes

Home GradeCalculation

X Grading Structure Student Grades
Assignments

Discussions Select grading scheme Information about

) GradeCalculation
GradeCalculation

1-10 rounding to nearest integer Close information

v Explanation
Calculate final score
Lorem ipsum dolor sit amet,
Component Weight Max. score Calculation consectetuer adipiscing elit. Aenean
commodo ligula eget dolor. Aenean
massa. Cum sociis natoque

- Final Score 100% 0
StudyCoach o penatibus et magnis dis parturient
= montes, nascetur ridiculus mus.
developmen i Selft tests 25% 10 Weighted Average Donec quam felis, ultricies nec,
¢ pellentesque eu, pretium quis, sem
Nulla consequat massa quis enim.
Practicum basics 5% 5 .
> Caloulation tab
Formulas 5% 10
> Grading tab
Practice exam 12% 10
Homework 20% 5 Minimum
Assignment Week 1 25% 10
Assignment Week 2 25% 10
+ Weekly presentation 50% 10 Maximum

Description of Grading Structure »

The final grade will consist of an outweighed average between the score of the final examination homework assi

Figure B.2: “Grading Structure" view: Open Information

Clicking the “Open Information" button at the top of the page will make an information page
appear from the right side of the screen. In that page, an explanation of “Grading Structure"
view and the “Student Grades" view will be given. For example, the teacher will be able to find
information along with tips and hints on how to set up the grading structure for their course.

@GREAT GRADERS
116

Great Graders Software Requirements Document

B.1.2 Create Assessment

Add component

Homework week 4

Homework week 5

Set weight

30%

Set mimimum grade requirement
55
Set date of examination

21/05/2019

Figure B.3: “Grading Structure" view: Create Assessment

This pop-up shows up when the “Add Component" item is selected in the option menu of a set
of assessments. At the top of this pop-up, the teacher first has to select whether the compo-
nent to be added is going to be an individual assessment or a set of assessments. The rest of
the choices depend on the initial selection from the teacher. In the picture above an individual
assessment was selected as the component to be added. The teacher then has to either select
one of the already defined Canvas assessments for this course, or create a new assessment.
If the teacher selects a Canvas assessment then they would only need to input the weight of
the assessment, should it need one. Otherwise, the teacher would also have to define how
the mark is represented as well as set the maximum score attainable for this assessment and
input its due date. When all required inputs are filled, the teacher can finalize the process by
clicking the button “Create" to complete the creation process of an individual assessment.

B.1.3 Edit Assessment

In case a change has to be made, the teacher can select the “Edit" option inside the option
menu for each assessment or assessment set. As a result of selecting the “Edit" option, a new
pop-up appears. Its contents are similar to the “Add Assessment" pop-up with the main omis-
sion being the selection of an assessment or assessment set.

%GREAT GRADERS
117

Great Graders Software Requirements Document

Edit component

Edit calculation type

Weighted Average

Edit grading type
Points
Percentages
Pass/Fail
30% n
Edit mimimum requirement

55

Figure B.4: “Grading Structure" view: Edit Assessment

Inthe case that the “Edit" option is selected for an individual assessment there are two differ-
ent cases to consider. If the individual assessment is a Canvas defined assessment, only the
weight can be changed. However, if the individual assessment was created by the teacher, its
name, weight, and representation of the mark along with the maximum score and the mini-
mum requirement for this assessment can be changed. In the case that the “Edit" option is se-
lected for a set of assessments then its name, weight, calculation method, and representation
of the mark along with the maximum score and the minimum requirement for this assessment
set can be edited.

QGREAT GRADERS
118

Great Graders Software Requirements Document

B.1.4 Create Assessment Set

Add component

B Add assessment group component
Select or create assessment group

Homework
Select calculation type
Weighted average
Select grading type
Points
Setmax. score Set weight
n 30%

Set mimimum grade requirement

55

Set date of examination

21/05/2019

Figure B.5: “Grading Structure" view: Create Assessment Set

The option “Add assessment set component" is the second option that appears in the “Add
Component" pop-up. When selected, a different set of inputs appear. Most of them are simi-
lar to the “Add assessment component", such as name, maximum score, and weight. However,
thereis also a new one that appears only for the assessment sets. This new option is the calcu-
lation method used to calculate the score for the assessment set. These calculation methods
are the following; weighted average, unweighted average, best/worst x out of 4 assessments,
maximum, minimum, sum and latest counts, as defined in the URD [1]. When all required in-
puts are filled, the teacher can finalize the process by clicking the button “Create" to complete
the creation process of a set of assessments.

%GREAT GRADERS
119

Great Graders Software Requirements Document

B.1.5 Multiple Attempts Overview

27N — ; i
b — Grade Calculation Wireframes
A4
@ Home GradeCalculation
Account
Grading Structure Student Grades
& Assignments
Dashboard
Discussions Select grading scheme
GradeCalculation

1-10 rounding to nearest integer Open information

Calculate final grade

Component Weight Max. score Calculation Min. requirement Options

- inal % 10
StudyCoach Final Score 100 0 55 @
developmen
5 + Written Exams 50% 10 Weighted Average 55 @
Final Exam 90% 5 - 55 @
i Delete
Formulas 5% 10 - 50 4 Edt
& Multiple Attempts
Practice exam 5% 10 - - ®
- Homework 20% 5 Minimum 55 ®
Assignment Week 1 25% 10 - @
Assignment Week 2 25% 10 - 55 @

+ Weekly presentation 50% 10 Maximum

Description student grades #
The final grade will consist of an outweighed average between the score of the final examination homework assignments. There is
also a mandatory Homework 1 which must be completed to pass the course.

Submission of Grading Structure

Validate and Submit

Figure B.6: “Grading Structure" view: Multiple Attempts Overview

When the teacher clicks on the options menu of an individual assessment, the third option in
the option menu is “Multiple attempts". When this option is selected for an assessment, a sec-
ond attempt for this assessment is created and both the original assessment and its second
attempt are placed in a new assessment set. This assessment set will replace the original as-
sessment, assuming the original assessment’s weight, grading type, max. score, and minimum
requirement. The calculation of the assessment set will be set, by default, to “Maximum". An
example for the assessment “Final Exam" can be seen in figure B.7 below. Here the second
attempt for “Final Exam" was created and added with the original “Final Exam" assessment
to the assessment set “Final Exam". As the original “Final Exam" assessment had a weight of
90%, with a maximum score of 10 and a minimum requirement of 5.5, the new assessment
set assumed these values. The calculation method of the assessment set is then set to “Maxi-
mum" and the original assessment and its second attempt then drop their weight as they are
now part of an assessment set with calculation method “Maximum" and thus they do not need
a weight. With these changes, the “Final Exam" assessment now has two attempts where the
highest mark the student attains will count for 90% of the partial score for the assessment

“Written Exam".
@GREAT GRADERS
120

Great Graders Software Requirements Document

B.1.6 Multiple Attempt Added

— Grade Calculation Wireframes

® Home GradeCalculation
Account

£ Grading Structure Student Grades

& Assignments
Dashboard

Discussions Select grading scheme
Cou GradeCalcul

ourses

1-10 rounding to nearest integer Open information
Calendar X
Calculate final grade
Inbox Component Weight Max. score Calculation Min. requirement Options

StudyCoach - Final Score 100% 10 sighted Averag 55 ®
developmen

¢ - Written Exams 50% 10 Weighted Average 55]

~| Final Exam 90% 5 Maximum 55 @

Final Exam 10 55 @

Final Exam Attempt 2 10 . ®

Formulas 5% 10 50 ®

Practice exam 5% 10 @

= Homework 20% 5 Minimum 55 @

Assignment Week 1 10 @

Assignment Week 2 10 s ®

+ Weekly presentation 30% 10 Maximum @

Description student grades #
The final grade will consist of an outweighed average between the score of the final examination homework assignments. There is
also a mandatory Homework 1 which must be completed to pass the course.

Figure B.7: “Grading Structure" view: Multiple Attempt Added

GREAT GRADERS

121

Great Graders Software Requirements Document

B.2 Student Grades view

= Grade Calculation Wireframes

Home GradeCalculation
Grading Structure S ing!
Assignments] emina!
There has been an update in grades. Please re-calculate final grades to
Discussions reflect these changes to prevent issues.
Student Grades A, import L, Export
GradeCalculation
Name Q Student ID o Homework week 1 & Homework week 2 @ Homework week 3 @ Final exam &
§ J| 120856 6.4 71 4.7 6.1
Pratima Muknopadhyay 104553 8.4 78 56 8.1
Fakhri Shokoohi 120856 6.4 7.1 47 8.1
StudyCoach
B Sara Scholz 383289 5.6 71 47 6.1
developmen
t
Xenie Dolezelova 120856 74 81 47 4.8
Athar Malakooti 120856 6.4 71 4.7 6.1
Lumir Sacharov 93331 6.4 71 4.7 6.1
Igor Antonovich 23232 6.4 838 6.1 82
Salomé Fernan 120856 9 71 47 6.1
Su Hua 3441 6.4 31 47 6.1

Afamefuna Okparo 120856 8.3 71 47 6.1

Kwak Seong-Min 120856 6.4 74 47 6.1

Calculate Final Grades

Calculate

Figure B.8: Student Grades view: Overview page

The purpose of this view is for the teacher to have access to and see the grades and marks
for all of their students in the selected course. At the top right corner, there are two buttons
namely “Import" and “Export". Clicking on the “Import" button enables the teacher to up-
load an assessment’s marks using a CSV file. On the other hand, clicking the “Export" button
creates a pop-up where the teacher can select whether they want to export marks, partial
grades, and/or final grades. Based on their selection, a CSV file will be downloaded to the
teacher’s computer containing the relevant information.

The main focus of this tab is the table at the center. The first two columns, “Name" and “Stu-
dent ID" arevisible at all times, while the rest of the columns depend on the number of assess-
ments imported by the teacher and the construction of the final score structure. For each im-
ported assessment and each assessment set a column is added where the corresponding cell
is filled with the student’s grade or mark.

As this table can grow extremely large, the teacher is given the option to search the data of
thetable. The teacher is able search based on either the Student Name or the Student ID. This
can be done by pressing the “Search" icon that is next to the header of the columns, “Name"
and “Student ID", respectively. In future version of Grade Calculation, Great Graders would
also recommend adding a filter option for each column.

As can be seen in the figure above, after the first two columns the search is replaced by an
option button. This options button entails a plethora of options available for the teacher to

@GREAT GRADERS
122

Great Graders Software Requirements Document

use such as mute and unmute, show and hide, and mark adjustment. A further explanation of
these features is given in the figure below.

At the bottom of the page, there is a red button, called “Calculate". When the grading struc-
ture and marks are finalized, pressing this button will calculate the partial grades for each
assessment set as well as calculate the final grade for each student based on the marks they
attained for each assessments. These partial grades and final grades will be displayed to the
teacher by adding columns for the grades in the table of the “Student Grades" view.

@GREAT GRADERS
123

Great Graders Software Requirements Document

B.2.1 Settings Button

- _
e = Grade Calculation Wireframes

58
i

Home GradeCalculation
Account
Grading Structure Student Grades
& Assignments
Dashboard
Discussions
Student Grades 1, Import 4, Export
GradeCalculation
Name o StudentID Q@ Homework week1 @ Homework week 2 @ Homework week 3@ Final exam &
ar)
Stephen Shaw 120856 Apply mark adjustment 5 a7 6.1
Pratima Mukhopadhyay ~ 104553 Unmute Assessment 7.8 56 81
Fakhri Shokoohi 120856 Hide from Students 71 4.7 8.1
StudyCoach
5 Sara Scholz 383289 56 74 47 6.1
developmen
t
Xenie Dolezelova 120856 74 8.1 4.7 4.8
Athar Malakooti 120856 6.4 7.1 a7 6.1
Lumir Sacharov 93331 6.4 74 47 6.1
Igor Antonovich 23232 6.4 8.8 6.1 8.2
Salomé Fernan 120856 9 71 4.7 6.1
Su Hua 34411 6.4 31 4.7 6.1
Afamefuna Okparo 120856 83 7.1 47 6.1
Kwak Seong-Min 120856 6.4 71 47 6.1
———
Calculate Final Grades <1 3 4>

Calculate

Figure B.9: Student Grades: Settings Button View

In the figure above, a view of the options menu is shown. This menu is shown only after the
options button next to the name of each assessment is clicked by the teacher. The items that
appear in this menu are “Apply mark adjustment"”, “Undo a mark adjustment", “Mute assess-
ment", “Unmute assessment", “Show assessment", and finally, “Hide assessment". Although it
may seem that muting and unmuting is identical to showing and hiding an assessment there is
animportant different between them. When muting an assignment, the student is still able to
see that the assessment exists however, is unable to see the grade or mark they have attained
for this assessment. On the other hand, when an assessment is hidden, the entire assessment
row is removed from the “Student Interface" and thus the existence of the assessment is not
shown to the student. Lastly, the mark adjustment is used to adjust the marks based on the
difficultly of the assessment. This is widely practice in the Netherlands, which is where the
development of Grade Calculation is located. Thus, this option was a major focus during de-
velopment and is further elaborated in Appendix B.2.2.

@GREAT GRADERS
124

Great Graders Software Requirements Document

B.2.2 Mark Adjustment

Mark adjustment

Fill in the blanks of the formula

Important: the numbers entered must be less than ten

Score
Maximum points

1.0 x 9.0

Back AN

Figure B.10: Student Grades: Mark Adjustment

If the mark adjustment is selected for an assessment then a pop-up window appears prompt-
ing the user to input the mark adjustment formula they desire. The pop-up has two input
fields which construct the formula for adjustment when they are filled in. An example of such
aformula can be seen in the figure above. Then, when the “Apply" button is clicked the marks
of the corresponding assessment are changed based on the inputted formula.

QGREAT GRADERS
125

Great Graders Software Requirements Document

B.2.3 Import and Export Buttons

Import CSV
Select assessment:
Homeworl k week 3

Upload the CSV file for the corresponding assessment.
Important: This file should contain two columns; one for Student ID
and the ofher for the corresponding grades.

Choose File

Back Upload

Figure B.11: Student Grades: Import Button View

Clicking on the “Import" button on the top right-hand side of the “Student Grades" tab, will
produce the pop-up shown above. On the top of the pop-up, a drop-down menu can be seen.
In this drop-down menu the teacher can select the assessment for which the marks will be
imported for. After the assessment has been chosen, the teacher can click on the “Choose
File" button. Then a local import window will be shown to the teacher. In this local window,
the teacher can select a CSV file which contains the marks for the chosen assessment.

QGREAT GRADERS
126

Great Graders Software Requirements Document

Export CSV

Select components for CSV export
Partial grades

8 Final grades

Figure B.12: Student Grades: Export Button View

When the “Export" button is clicked in the“Student Grades" view, the pop-up shown in the
figure above will appear. In this pop-up the teacher would first have to select whether they
would like to export marks, partial grades, and/or the final grades of the students. Based on
their selection, a CSV file will be downloaded to the teacher’s computer containing the rele-
vant information.

QGREAT GRADERS
127

Great Graders C.2

Appendix C

Transitions

The previous section discusses user interfaces in great detail. In turn, this section introduces
transition diagrams using the Petri Nets representation. These diagrams schematically model
the behaviour of the application, making use of places and transitions in order to reflect vari-
ous views every interface has and the actions that are possible on these views, respectively.

C.1 Application Launch

Grade Calculation application is a plugin which is launched directly from the LMS, Canvas.
Upon application launch, Drieam Framework performs user authentication, which is used by
the Grade Calculation plugin. During the authentication, the user’s role is verified as being
either a Teacher (with the permissions stated in [1] section 2.4.1) or a Student, since these
are the main two roles. Based on the role, the user is then redirected to the corresponding
interface. The figure C.1 shows the corresponding transition to the respective interface.

Authenticated Teacher
as Teacher = Interface

Authenticated
as Student ST Interface

Figure C.1: Transition Diagram of Application Launch

Both Teacher and Student interfaces allow for multiple transitions, which are discussed in the
sections below.

C.2 Student Interface

The Student Interface displays the marks and grades for a particular student. Here the stu-
dent can examine their grades by expanding the tree-view table. Additionally, there is a pos-
sibility for the student to export their marks and grades. For this purpose, the application has

@GREAT GRADERS
128

Great Graders Software Requirements Document

aseparate Export View, implemented as a pop-up dialog. The figure C.2 below captures these
actions in a transition diagram.

View
Grades

Open
So ook

View

Student
Interface
lIn}

Export
Grades

Close
Grades

Figure C.2: Transition Diagram of Student Interface

C.3 Teacher Interface

The Teacher Interface has two views: “Grading Structure" view and“Student Grades" view.
They can be reached by clicking the appropriate tabs in the interface (see figure C.3).

Click Grading
Structure Tab

Teacher
Interface

Student
Grades
View

Click Student
Grades Tab

[Out]

Figure C.3: Transition Diagram of Teacher Interface

The figure C.4 below shows the transition diagram for the “Grading Structure" view. It is pos-
sible to access the Information View from this page. Besides this, the “Grading Structure"
view allows a teacher to select a grading scheme, edit the final score structure, edit descrip-
tion of grading structure, and save the progress. These are self-transitions because they do
not require separate views and can be implemented on the “Grading Structure" view itself
(e.g. by using a drop-down menu, a button, or an editable text field). Finally, there is a possi-
bility to validate and submit the final score structure once it has been completed.

@GREAT GRADERS
129

Great Graders Software Requirements Document

Information
View

Open Close
Information Information

Select
Grading Scheme

Edit
Grading Structure

I

Edit Description of
Grading Structure

Save Validate
Progress and Submit

Figure C.4: Transition Diagram of “Grading Structure" view

The last figure C.5 captures the behavior of the"Student Grades" view. The main purpose of
this view is to display the grades of all students to a teacher of the specific course.

When the teacher navigates to the“Student Grades" view, the application detects if there has
been an update in the grades. If this is the case, the application will display a warning, no-
tifying that the grades have to be recalculated. In the diagram, this is the state called “Stu-
dent Grades view with Warning". The teacher can either close this warning, working in Out-
dated“Student Grades" view (without the warning), or initiate the recalculation of grades,
getting to an up-to-date“Student Grades" view (without the warning). The three places men-
tioned above allow for the same transitions, however only the“Student Grades" view is elab-
orately explained in the diagram for simplicity.

The grades on the“Student Grades" view are displayed in columns per assessment. Further-
more, the view allows for the manipulation of marks of a specific assessment. Adjusting the
marks is possible via setting the “Mark adjustment", which is implemented as a pop-up dia-
logue, and thus is shown separately as the Mark Adjustment View. Furthermore, it is possible
to mute and unmute any assessments, as well as hide and show the final grades. Finally, there
is a possibility for the teacher to search the grades by the student name or the student ID.
Moreover, the“Student Grades" view supports importing and exporting of the“Student Grades".
Both of these actions require separate views, which are displayed as Import Grades View and
Export Grades View in the diagram.

@GREAT GRADERS
130

Great Graders Software Requirements Document
Change in Student Close Qutdated
Grades Grades View Warning Student Grades
Detected with Warning View

Recalculate
Grades
Open Mark
N (Adjustment
Open Close Mark
Import Adjustment
Import Mute
Grades Assessment
K1
Cancel ?Estﬁa%e;;) Unmute
> A
Import View < nent
n L —
AN
Open Search Grades by
Export Student Name
g):gdo;ts Export Search Grades by
View Grades Student ID
/ Calculate
Cancel Final
Export — Grades
Hide
\———————————————%b Final
~ Grade
~ 3 Show
~ = Final
Grade

Apply
Mark
Mark Adjustment
Adjustment
View
Undo
Mark
Adjustment

Figure C.5: Transition Diagram of“Student Grades" view

131

GREAT GRADERS

	Introduction
	Purpose
	Scope
	List of Definitions
	Definitions
	Abbreviations and Acronyms

	List of References
	Overview

	General Description
	Relation to Current Projects
	Relation of Predecessor and Successor Projects
	Function and purpose
	Environment
	Relation to Other Systems
	Canvas

	General Constraints
	Security and privacy
	Usability
	Environment
	Language
	Performance
	Reliability

	Model Description
	Environment Model
	Class Diagram
	Data Model
	Sequence Diagrams

	Specific Requirements
	Functional Requirements
	Student Interface
	Teacher Interface - Grading Structure
	Teacher Interface - Student Grades
	Administrator Interface - Grading Structure
	Administrator Interface - Student Grades
	Course
	Assessment
	Student
	Mark
	Grade
	Score
	Constant
	Calculation Method
	Condition
	Grading schemes
	Grade Calculator
	Import
	Export
	Controllers
	REST API Controller
	Score Structure Validator
	Authorization
	Routes
	Audit logs
	Notification

	Requirements Traceability Matrix
	URD to SRD
	SRD to URD

	User Interface - Student
	Student View

	User Interface - Teacher
	``Grading Structure" view
	Information Button
	Create Assessment
	Edit Assessment
	Create Assessment Set
	Multiple Attempts Overview
	Multiple Attempt Added

	Student Grades view
	Settings Button
	Mark Adjustment
	Import and Export Buttons

	Transitions
	Application Launch
	Student Interface
	Teacher Interface

