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Abstract

Business Artifacts are the core entities used by busi-
nesses to record information pertinent to their operations.
Business operational models are representations of the pro-
cessing of business artifacts. Traditional process modeling
approaches focus on the actions taken to achieve a cer-
tain goal (verb-centric). Business artifact-centric modeling
starts by identifying what is acted upon (noun-centric), and
constructs business operational models by identifying the
tasks/actions that business actors execute to add business
value. In this paper, we identify important classes of prop-
erties on artifact-centric operational models. In particu-
lar, we focus on persistence, uniqueness and arrival proper-
ties. To enable a static analysis of these properties, we pro-
pose a formal model for artifact-centric operational mod-
els. We show that the formal model guarantees persistence
and uniqueness. We prove that, while checking an arrival
property is undecidable in general, under a restricted ver-
sion of the formalism, an arrival property can be checked in
EXPTIME .

1 Introduction

Any business needs to maintain records of information
pertinent to their operations. Information about the key as-
pects of a business operation is used to evaluate the effec-
tiveness in producing the business products. In recent years
regulatory measures require significant rethinking about the
level of traceability to ensure accountability of business ac-
tions that meet compliance standards. Businesses of today,
small or large, maintain such records, sometimes surpris-
ingly still in paper format, sometimes in more electronic
formats such as spreadsheets and sometimes within larger
management systems such as ERP solutions.

In our day-to-day experience one can observe many
uniquely identifiable entities that are used by businesses to
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capture information pertinent to a business operation. For
example, consider a standard banking process where a cus-
tomer withdraws money from his/her banking account. The
customer fills out a withdrawal slip which captures the cus-
tomers account number, name, date and the amount s/he
wants to withdraw. A teller receives this request document
and matches it against the customers account status and
properly fulfills the request by withdrawing the requested
amount from the customers account. The withdrawal slip is
then filed, eventually scanned and added to the customers
records. Another common example is the management of
orders in a restaurant. The key entity here is the guest check,
which captures all orders, the price for each order, the total,
when it has been paid and what the means of payment were.
The restaurant thereby records all important information on
guest check to account for all orders placed and money re-
ceived from the customers, which is matched against the ac-
tual cash receipts in the register. The Withdrawal Slip and
the Guest Check are the core entities used to manage busi-
ness operations for the bank or the restaurant respectively.
We call these core entities Business Artifacts[22].

In recent years several teams within IBM Research have
conducted over a dozen studies with a variety of enterprises
from different industry vertical. The core aspect of these
studies was to identify business artifacts and how they are
used to manage business operations. A business artifact is
an identifiable, self-describing unit-of information through
which business stakeholders add value to the business. A
Withdrawal Slip, a Receipt, a Purchase Order, a Service
Order, etc. are typical examples of business artifacts. A
purchase order is a unique entity with well-defined business
intent, namely capturing the order of a customer and record-
ing the status of the order as it is processed. The business
stakeholders involved in processing the purchase order will
update the document in the course of the purchasing op-
eration. The purchase order thereby has a life-cycle from
creation by the customer, received by the purchasing depart-
ment, validated by the credit department and upon delivery
of goods, closed and eventually archived.

Traditional business process modeling techniques focus



on the actions taken to achieve a certain goal (often referred
to as verb-centric). Hence, business stakeholders describe
their business by stating first we do A, then B, then C, and
while doing C we also do D. Our approach proposes to
focus on what is acted upon, thus describing business op-
erations by first identifying the things that matter to their
business (e.g. Purchase Order, Insurance Claim), and sec-
ond how these things are processed to achieve a certain
goal. Modeling business operations using business artifacts
is thus a noun-centric approach.

In our client engagements we have made several obser-
vations with respect to the value of artifact-centric opera-
tional modeling. First, consolidating business processes in
enterprises of today is an arduous task. Large enterprises are
often grown out of mergers and acquisitions and thus many
business processes exist in various different forms within
the same enterprise. Consolidation efforts are often stalling
the unification process as business process owners cannot
agree on the one-for-all process. The reluctance of busi-
ness stakeholders to agree on one process is somewhat a
cultural problem, yet we have found that introducing the
noun-centric artifact approach helps business stakeholders
more easily to agree on the business operations. We em-
pirically observed that it is easier for business stakeholders
to agree on the things worked upon to managing their busi-
ness rather than on how they want to establish a business
process. Agreeing on the artifacts that capture key informa-
tion pertinent to the business context is the basis for asking
how these artifacts are being processed to achieve the busi-
ness goal. Second, over the last few years a research team
at IBM Research has developed a toolkit containing tools,
technologies and methods to use the notion of business ar-
tifacts and build SOA solutions by maintaining the abstrac-
tions in terms of artifacts from operational modeling down
to solution design to implementation. This has been done
in the context of Model-driven Business Transformation[3]
and applied in various real-world engagements.

In this study we investigate a formalization of artifact-
centric modeling of business operations (also referred to as
business operational modeling as opposed to business pro-
cess modeling) and study some static analysis questions.

The main technical contributions of this paper are:

• We investigate business artifact-centric operational
modeling approach of [22, 3], and for each construct
we propose an appropriate formalism that enables au-
tomated analysis of such models.

• We identify some important classes of properties such
as persistence, uniqueness, arrival, encounter, semi-
synchronizability, redundancy, access independence,
data independence. We focus on persistence, unique-
ness, and arrival.

• We show that the proposed formalism guarantees per-
sistence and uniqueness. We prove that checking an
arrival property is undecidable in general. Under a re-

stricted version of the formalism, we demonstrate that
an arrival property can be checked in EXPTIME.

The rest of the paper is organized as follows: In Section
2, we give an informal introduction to artifact-centric oper-
ations modeling with an example. In Section 3, we describe
a set of important properties one may want to check against
operational models. In Section 4, we present our formal-
ism. In Section5, we explain our results. The conclusion
and future work are provided at the end.

1.1 Related Work

Many tools and techniques have been used for the de-
velopment of business process models over the last two
decades[14, 19, 27, 17]. These approaches have followed
a process-centric approach focused on the control and coor-
dination of tasks[9]. The importance of a data-centric view
of processes is advocated in [2] and [12]. In [2], the authors
encourage an “object view” of scientific workflows where
the data generated and used is the main focus. In [12], the
author investigates “attribute-centric” workflows where at-
tributes and modules have states. [18] proposes a mixed
approach which can express both control and data flow. An-
other mixed approach is proposed by BPMN[4]. Compared
to these approaches, our work also follows a data-centric
view, but the granularity of our notion of data is different.

Our work is also related to object-oriented programming
formalisms that have been proposed in [1] and [13]. [1] pro-
poses a model for object-oriented programming and studies
consistency of method calls with respect to method signa-
tures. Our method formalism is syntactically similar to the
one of [13] where an arrival-like question was studied. In
our case, however, the methods are nonrecursive and the ar-
rival is formulated between configurations instead of meth-
ods.

Other related work includes object histories of [11], In-
flow schemas of [15], the scripts of [20], and object migra-
tions of [26]. [11] defines a mathematical formalism that
captures the main aspects of the historical data for objects.
Our notion of a run is similar to an “object history” of [11],
but in our case a computation-tuple sequence also includes
states of tasks. The computation model for tasks can be
viewed as a proper subset of behavior models such as the
scripts of TAXIS [20]. Infoflow [15] proposes a data cen-
tric modeling but a computation model is not provided for
tasks. [26] investigates the formal characterization of object
migration patterns under different update languages.

Our intention to use finite state machines for business
artifacts resembles the typestate concept proposed in [25].
Typestate is a refinement of a type and a machine over type-
states is used to define syntactically well-formed but seman-
tically undefined sequences of operations on variables of a
type. In this work, we do not provide an extensive language
to describe constraints on the artifacts and their relation-
ships; however, the results on the constraint languages for



object models such as [23] and [6] can give some hints along
this direction.

There have been studies also on static analysis of e-
business process specifications. In [21] and [24], the au-
thors analyze BPEL specifications via converting them to
Petri Nets. In [8], the authors present a set of tools and
techniques for analyzing interactions of composite asyn-
chronous BPEL services. [16] provides a verification tool
for web service orchestration, process algebra as the under-
lying formalism. In [5], the authors use a mix of techniques
from logic and automated verification, and propose a tool
to verify data-driven Web services. In [7], specifications are
modeled in UML, in the form of Message Sequence Charts
(MSCs), and transformed into the Finite State Process nota-
tion (FSP) to concisely describe and reason about the con-
current executions.

2 Business Artifact-centric Operational
Modeling

In this section, we briefly describe the terminology
and the constructs in artifact-centric operational modeling.
Artifact-centric models consist of 3 key constructs: Busi-
ness artifacts, business tasks, and repositories [22].

RepositoryTaskArtifact RepositoryTaskArtifact

Artifact Name Task Name Repository
Name

Figure 1. Graphical Notations of Modeling Primitives

A business artifact is an identifiable, self-describing
unit-of-information. Business stakeholders add value to
the business through business artifacts. For instance, in a
restaurant, guest checks are the key business artifacts. A
guest check captures what a customer orders and the status
of these orders as they are processed. Business stakeholders
such as waiters and cashiers update the check in the course
of a dining experience. A guest check thereby has a life-
cycle from the creation when the customer arrives to the
archival when the customer leaves.

A business task (or simply task) describes the work act-
ing upon an artifact by which a business role adds measur-
able business value to this artifact. We require a task to gen-
erate business value and hence, update an artifact. This con-
dition helps in defining the granularity of a task or the task
boundaries. Imagine a simple scenario where two tasks, T1
and T2 work on an artifact consisting of ten name-value
pairs. A business stakeholder could determine that com-
pletion of T1 will require an update of, say, attributes 2-5
of the artifact and T2 requires an update of attributes 6-10.
Therefore, adding business value in this case can be clearly
defined by the business stakeholder who thereby determines
the boundaries of a task.

A repository describes a waiting shelf or a buffer for an
artifact. Tasks can push an artifact into a repository and pull
an artifact out of a repository.
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Figure 2. Operational Model of Resturant(GC= GuestCheck,

RC= Receipt, KO=Kitchen Order, CB=Cash Balance)

Next we illustrate these constructs with an example.
Example:1 Figure 2 illustrates an operational model of
a restaurant. This restaurant uses four artifact types
while conducting its business: “guest checks”, “receipts”,
“kitchen orders”, and “cash balance”.

We can informally describe the operations of this restau-
rant as follows: When a customer walks in the restaurant,
the customer is greeted and a guest check artifact is cre-
ated with the customer information such as the customer
name and table number. It is then placed into the repository
for “open” guest checks (Open GCs). When the customer
gives an order, “AddItem” task is triggered. This task re-
trieves the customer’s guest check, creates a kitchen order
and adds it into the “pending kitchen orders” repository.
After the kitchen order is prepared, if it passes the quality
test, it is inserted into the “ready kitchen orders” reposi-
tory. Otherwise, it is sent back to the pending kitchen or-
ders repository to be re-prepared. The required quality by
the quality test depends on the customer. If the customer is
a “special” customer then the order must have a high qual-
ity, otherwise, a regular quality is “ok”. The kitchen orders
passing the quality test is delivered, and the delivery time
of the kitchen order is recorded on the guest check and the
kitchen order artifact is “archived”.

When the check is requested, a receipt is prepared and
the guest check is “closed”. If the customer disagrees on
the receipt amount, the receipt is recalculated. When the
payment of the receipt is successfully done, the receipt is
added to the cash balance of the restaurant and then, the
receipt and the guest check are archived.

3 Static Analysis of Operational Models

Artifact-centric operational models are specifications of
businesses at an abstract level and they are used as the start-

1This example is adapted from the one in [22]



ing point to obtain implementations. Therefore, the “cor-
rectness” of models is of critical importance to businesses.
By correctness, we mean models should satisfy “desired”
properties derived from the business logic and context. To-
wards this direction, we identified several classes of proper-
ties. These properties help to understand the discrepancies
between what is desired and what a model satisfies.

Arrival: Can an artifact A arrive into a repository R? In
our example, a guest check should be able to arrive into the
archived-guest-checks repository. This shows the comple-
tion of the guest check processing is possible.

Persistence: Once an artifact is created, does it persist or
can it disappear? In order for a business to operate, the “im-
portant” business data should never disappear and should
always be locatable. For example, a guest check should
never be “destroyed” or get “lost”, because it contains key
information pertinent to the operations of the restaurant.

Uniqueness: Can an artifact appear in more than one
“places” at once? An “unambiguous” specification of busi-
ness operations require “important” business data to be in
one business state at any time. For instance, a receipt
shouldn’t be in both paid-receipts and disagreed-receipts
repositories at the same time.

Encounter: Can two different artifacts encounter? For
instance, in our example, a receipt and a kitchen order never
encounter, while a receipt and a guest check may encounter
in update-cash-balance task.

Semi-synchronizability: An artifact’s “progress” can be
dependent on the existence of another artifact. For in-
stance, the archival of a kitchen order requires the existence
of the guest check; therefore, the kitchen order is semi-
synchronizable with the guest check. On the other hand, the
guest check can be moved to closed-guest-checks repository
without the arrival of the kitchen order. Therefore, the guest
check is not semi-synchronizable with the kitchen order.

Task/Repository Redundancy: Is a task (or repository)
redundant? (The removal of it doesn’t “impact” the “behav-
ior” of the model). An operational model can be optimized
by eliminating the redundancies.

Access Independence of Tasks: Do two tasks access dif-
ferent parts of the same artifact? For instance, the tasks
prepare-receipt and recalculate-receipt are not access inde-
pendent, because they access the receipt amount.

Data Independence: Do two artifacts have a data rela-
tionship? For instance, the receipt and the cash balance are
not data independent because the cash balance amount de-
pends on the receipt amount. On the other hand, the guest
check and the cash balance have no data relationship; there-
fore, they are data independent.

In this paper, we focus on arrival, persistence, and
uniqueness properties. Automated analysis of these prop-
erties require a formalization for operational models. To
achieve this, in the next section, we propose a formal model.

4 A Formal Model For Business Operations

In this section, we propose a formal model for artifact-
centric business operations and the key concepts including
“artifacts” and “operational models”.

We assume two pairwise disjoint domains: an infinite
set of uninterpreted elements denoted by dom= on which
only the equality relation is defined, and an infinite densely
ordered set dom�. The values in dom= ∪ dom� are called
constants. We assume an infinite set of business artifact
instance identifiers denoted by domid on which only the
equality relation is defined. We also assume an infinite set
NA of business artifact type names.

We define three kinds of atomic types: Dle, Deq, and a
business artifact type to which a unique name in NA is as-
sociated (more explanation comes later). We define a map-
ping dom between these types and the domains such that
dom(Deq) = dom=, dom(Dle) = dom�, dom(τ ) = domid

where τ ∈NA.
We also define a data function type. A data function

type has the form S1, . . . , Sl → T1, . . . , Tm where Si, Ti’s
are atomic types. An instance f of such a type is a mapping
f : S1×· · ·×Sl → T1×· · ·×Tm with a finite domain such
that f maps a tuple (a1, . . . , al) ∈ dom(S1)× · · ·×dom(Sl)
to a tuple (b1, . . . , bm) ∈ dom(T1)× · · ·×dom(Tm).

An artifact comparison over x, y is of the form x = y
where x, y are variables of the same artifact type. Scalar
comparisons over x, y, c are of the forms xθy and xθc
where x, y are variables of the type Deq (resp. Dle), c
is a constant in dom= (resp. dom�), and θ ∈ {=, �=} (resp.
θ ∈ {<,�, >,�,=, �=}).

4.1 Business Artifact

We now present the central notion of an artifact. A busi-
ness artifact contains information pertinent to the business
context at hand and business operations represent the life-
cycle of artifacts from creation to completion. Information
is represented using attributes. Furthermore a set of meth-
ods and a state machine describe the act of processing on the
artifact from the artifact’s perspective. Our intention to use
state machines is to define semantically defined sequences
of operations on artifacts similar to the typestate concept of
[25]. Although the notion except for the state machine re-
sembles a class definition in object oriented models, our key
focus is on the life cycles of artifacts or “process organiza-
tion” rather than the ease of programming or data organiza-
tion.

Definition: A business artifact type (shortly an artifact
type) is a tuple (L,P,M) such that

• L is a set of attribute names with associated types.

• P is a set of methods with distinct names.

• M is a (possibly nondeterministic) finite state machine
and its transitions are labeled with method names from



P such that M recognizes the language of the allowed
sequences of method invocations.

• A method has four components: 1) name; 2) input pa-
rameters: u1, . . . , um with atomic types S1, . . . , Sm;
3) output parameters: w1, . . . wn with atomic types
T1, . . . , Tn; 4) body: A sequence of statements of the
following forms:

– x := y where x is an output parameter or in L, y is an
input parameter or in L, and typeOf(x)= typeOf(y),

– x ∪ = (ui1 , . . . , uij
�→ uk1 , . . . , ukl

)
where x ∈ L and typeOf(x) = Si1 , . . . , Sij

→
Sk1 , . . . , Skl

, and ix, ky ∈ {1, . . . , m},

– (wk1 , . . . , wkl
) := x(ui1 , . . . , uij

)
where x ∈ L and typeOf(x)= Si1 , . . . , Sij

→
Tk1 , . . . , Tkl

, and ix ∈ {1, . . . , m}, ky ∈ {1, . . . , n},

– wi := (ui1 , . . . , uij
�→ uk1 , . . . , ukl

) ∈ x
where x ∈ L, typeOf(wi)=Dle, typeOf(x)=
Si1 , . . . , Sij

→ Sk1 , . . . , Skl
, and ix, ky ∈

{1, . . . , m}.

An artifact instance of an artifact type (L,P,M) is a
pair (id, λ) where id ∈ domid, and λ is a partial mapping
such that λ(state) is in statesOf(M ), and for every x ∈ L,
if defined, λ(x) is in dom(typeOf(x)). Let x.id represent
the id of an artifact instance. A set of artifact instances is
consistent, if for every different x, y in the set, x.id �= y.id.
Let A represent a set of artifact types with the following
property: For every type τ in A, any type referenced by τ
is also in A. Let Λ represent the set of all consistent sets of
artifact instances.

The details of formal semantics of method executions
can be found in [10]. Briefly, a method includes four types
of operations: An assignment from input parameters and ar-
tifact attributes to output parameters and artifact attributes;
an addition of a new mapping to a data function type at-
tribute; accessing the value of a mapping in a data func-
tion; and checking whether a given mapping is defined for
a data function typed attribute. The execution semantics of
a method is defined as the sequential execution of the state-
ments in the body. The form m(x1, . . . , xk �→ y1, . . . , yl)
represents the invocation of a method m. xi’s represent
the input values. When the invocation ends, yj’s contain
the output values. The method execution is assumed to be
atomic and the intermediate states of the computation are
not visible.

4.2 Repository, Task, Operational Model

Repositories are containers for artifacts where they await
future processing. Each repository can keep many artifacts
of a single artifact type. A repository provides operations
for tasks to access the artifacts it contains. We assume a set
R of repositories each has an associated artifact type in A.

Definition: The following operations are defined on a
repository R (The semantics are defined later.):

• checkIn: adds an artifact in R,
• checkAnyOut: retrieves an artifact from R,
• checkOut: retrieves a specific artifact from R,
• contains: checks if R contains a specific artifact,
• nonempty: checks if R contains any artifact .

Let related(A,R) be true if A⊆ A, R⊆ R, the associated
type of every R∈R is in A, and for every type τ in A, there
is at least one R∈R such that its associated type is τ .

In the remainder of the paper, we use A, R, Λ so that
related(A, R) is true and Λ is a consistent set of artifact
instances each is of a type in A.

A repository mapping γ over R and Λ is a mapping γ :
R→ 2Λ with the following properties: for every repository
R∈ R, γ(R) ⊆ Λ, and for all x ∈ γ(R), x’s type is the
same with R’s associated type, and for all different R1, R2

∈ R, for all y ∈ γ(R1), for all z ∈ γ(R2), y.id �= z.id.
Tasks are functional units of work carried out on arti-

facts. Tasks retrieve artifacts from repositories, read/update
artifact data via invoking the artifact methods, and inserts
artifacts into repositories.

Definition: A task over A, R is a tuple (L, M ) where

• L is a set of variables each is of an artifact type in A, or
of the type Deq or Dle.

• M = (Σ, S, s0, Sf , T, l) is a deterministic finite state
automata where:

– Σ is a set of statements where a statement has one of
the following forms:

- A.new(x) - R.checkAnyOut(x)
- R.checkOut(x) - R.checkIn(x)
- reset(z1, . . . , zl)
- x.m(y1, ..., yk �→ z1, ..., zl)

where x ∈ L and typeOf(x)= τ for some artifact
type τ ∈ A; R ∈ Rand R’s associated type is τ ; m is
a method defined by τ ; each yi is in L or a constant;
each zi is in L,

– S is a set of states, Sf ⊆ S is a set of final states,
s0 ∈ Sf denotes the “initial” state,

– T , the transition relation, is a subset of (S × (Σ −
{reset(. . . )})×S) ∪ (Sf ×{reset(. . . )}×{s1}) ∪
({s0}×{reset(. . . )}×{s1}) for some s1 ∈ S−{s0},

– l : T → G is a labeling function where G is a set of
guards.

• A guard is defined inductively as follows: true is a
guard; for every x, y ∈ L and a constant c, every artifact
comparison over x, y and every scalar comparison over
x, y, c are guards; R.contains(x) and R.nonempty are
guards where x ∈ L and typeOf(x)∈ A, R∈ R and R’s
associated type equals to typeOf(x); g1 ∧ g2 is a guard
where g1, g2 are guards.



R1.checkOut(gc)

KitchenOrder.new(ko)

gc.customerType( - type)

gc.add(ko - )

R1.checkIn(gc)R2.checkIn(ko)

reset(gc, item, quantity)

[type = “special”]
ko.setItem(item, quantity, 

“hq”, gc - )

[type ≠ “special”]
ko.setItem(item, 

quantity, “rq”, gc - )

Figure 3. AddItem Task

Example: Figure 3 illustrates our guarded finite state ma-
chine representation for the task AddItem. The task is trig-
gered with a “reset” action which resets all the variables in
the context of a task. This action also models the input from
the external world; therefore, “gc”, “itemNo”, and “quan-
tity” contains the external input values. A guest check from
“open guest checks” repository is retrieved using the value
of “gc”. Then, a kitchen order is created and its item num-
ber and quantity are set. If the customer is a special cus-
tomer, then the order is set to have a high quality (“hq”);
otherwise, it is set to have a regular quality (“rq”). Finally,
both artifacts are checked in.

A task instance of a task (L,M) over A and R with
respect to Λ is a mapping π such that (i) π(state) is in
statesOf(M ); (ii) for every x ∈ L, if defined, π(x) is in
dom(typeOf(x)); (iii) if π(x) is defined and typeOf(x)∈ A,
then π(x) = y.id for some y ∈ Λ.

A task instance π of a task (L,M) satisfies
• an artifact comparison x = y where x, y ∈ L if π(x)

and π(y) are defined, and π(x) = π(y).
• a scalar comparison xθy where x, y ∈ L, if π(x) and

π(y) are defined, and π(x)θπ(y) is true.
• a scalar comparison xθc where x ∈ L and c is a con-

stant, if π(x) is defined and π(x)θc is true.
• R.contains(x) if π(x) is defined, and π(x) = y.id for

some y ∈ γ(R).
• R.nonempty if γ(R) is not empty.
• a guard g1 ∧ g2 if π satisfies g1 and g2.

Let Π be a set of task instances. A task mapping φ over
Π and Λ is a mapping φ : Π → 2Λ with the following
property: for every task instance π ∈ Π of a task (L,M),
φ(π) ⊆ {x | x ∈ Λ and x.id= π(y) for some y ∈ L}.

We now proceed to define operational models that de-
scribe the operations of a business.

Definition: An operational model is a tuple (A, R, T) such
that related(A, R) and T is a set of tasks over A and R.

A configuration of an operational model (A, R, T) is a
tuple (Λ,Π, φ, γ) where Λ ⊆ Λ is a consistent set of artifact
instances each is of a type in A; Π is a set of task instances
of tasks in T with respect to Λ; φ is a task mapping over Π
and Λ; γ is a repository mapping over R and Λ such that i)
for every task in T, there is exactly one task instance in Π;

ii) for all R∈ R, for all π ∈ Π, for all x ∈ γ(R), for all
y ∈ γ(π), x.id �= y.id); iii) Λ = {x | x ∈ φ(π) for π ∈ Π}
∪ {x | x ∈ γ(R) for R∈ R}. Intuitively, φ refers to the
artifact intances that are checked out by the task instances
and γ refers to the instances that are in the repositories.

4.3 Computation Semantics

In this section we sketch the semantics of the proposed
formalism. Because of the page limitations, some of the
details are left out. The full description of the semantics
can be found in [10].

Let C = (Λ,Π, φ, γ), C′ = (Λ′,Π′, φ′, γ′) be two
configurations. Let π ∈ Π be a task instance of a task
(L,M), s be a statement such that (π(state), s, q) ∈
transitionRelationOf(M) for some q ∈ statesOf(M), and
g be the guard assigned to s in M . We say C′ can be derived
from C with s of π, denoted by C π,s−−→ C′, if Λ′,Π′, φ′, γ′
can be derived from Λ,Π, φ, γ according to the rules below:

• If s has the form A.new(x), and π(x) satisfies g, and
π(x) is not defined, then:

– Let (t, λ) be an artifact instance of the artifact type
A = (L′, P ′,M ′) such that t ∈ domid− {y.id | y ∈
Λ}, λ(state) = initialStateOf(M ′), and for every z ∈
L′, λ(z) is not defined.

– Let π′ be a task instance of the task (L,M) such that
π′(state) = q, π′(x) = t, and for every y ∈ L −
{x}, π′(y) is not defined if π(y) is not defined, and
π′(y) = π(y), otherwise.

– Π′ = Π − {π} ∪ {π′}, and Λ′ = Λ ∪ {(t, λ)}.

– ∀y ∈ R, γ′(y) = γ(y). ∀y ∈ Π−{π}, φ′(y) = φ(y),
and φ′(π′) = φ(π) ∪ {(t, λ)}.

• For the other cases, please see [10].

A configuration C = (Λ,Π, φ, γ) is a root configuration
iff for every π ∈ Π, the following properties are true: i) Let
(L,M) be the task of which π is an instance. Then, π(y) is
undefined for all y ∈ L, ii) π(state) = initialStateOf(M),
iii) φ(π) is empty. The third property implies all artifact
instances are in the repositories (i.e., Λ is {x | x ∈ γ(R)
and R∈ R}, and {x| x ∈ φ(π) and π ∈ Π} is empty ).

An execution graph with respect to a root configuration
and an operation model is a directed labeled graph defined
inductively as follows: i) the root configuration is a node in
the graph, ii) a configuration C′ is in the graph if C π,s−−→ C′
for some C, π, s. A configuration C′ is reachable from a
configuration C if there is a path in the execution graph from
C to C′.



5 Analysis of Properties

In this section first we show that persistence and unique-
ness are guaranteed by our formalism. Then we describe
our results for checking arrival properties. Henceforth, we
refer to our formalism as OpMod.

5.1 Persistence and Uniqueness

In this section, we define uniqueness and persistence and
show that our formalism guarantees these properties.

Informally, an artifact instance is persistent with respect
to an operational model and a root configuration if it is al-
ways either in a repository or referenced by a task. Let
F= (A, R, T) be an operational model in OpMod, C =
(Λ,Π, φ, γ) be a root configuration of F , x ∈ Λ be an arti-
fact instance of type (L,P,M). We say x is never destroyed
with respect to F and C if there is a reachable configuration
C′ = (Λ′,Π′, φ′, γ′) where y.id = x.id for some y ∈ Λ′. We
say x is always accessible with respect to F and C if there
is a reachable configuration C′ = (Λ′,Π′, φ′, γ′) such that
there exists an artifact instance y ∈ Λ′ where x.id = y.id
and one of the following is true: i) y ∈ γ′(R) for some R∈
R; ii) y ∈ φ′(π′) and y.id = π′(z) for some π′ ∈ Π′ and
z ∈ L. Finally, x is persistent with respect to F and C, if x
is never destroyed and always accessible with respect to F
and C.

Informally, an artifact instance is unique with respect to
an operational model and a root configuration if it never ap-
pears in two places throughout its life cycle. Formally, x
is unique with respect to F and C, if there is no reachable
configuration C′ = (Λ′,Π′, φ′, γ′) such that there exists an
artifact instance y ∈ Λ′ where x.id = y.id, and one of the
following is true: i) y ∈ γ′(R1) and y ∈ γ′(R2), for differ-
ent R1, R2 ∈ R; ii) y ∈ φ′(π′) and y ∈ φ′(π′′) for different
π′, π′′ ∈ Π′; iii) y ∈ γ′(R1) and y ∈ φ′(π′) for R1 ∈ R,
π′ ∈ Π′.

We have the following result.

Theorem 5.1 For each operational model F defined in
OpMod, for each root configuration C of F , and for each
artifact instance x in C, x is unique and persistent with re-
spect to F and C.

5.2 Verification of Arrival Properties

Informally, an artifact can arrive into a repository if there
is a way to process the artifact so that it eventually appears
in a repository. Let F= (A, R, T) be an operational model
in OpMod, C = (Λ,Π, φ, γ) be a root configuration of
F , x ∈ Λ be an artifact instance of type (L,P,M), R
be a repository in R. We say x can arrive into R with
respect to F and C, if there is a reachable configuration
C′ = (Λ′,Π′, φ′, γ′), and an artifact instance y ∈ Λ′ such
that x.id = y.id and y ∈ γ′(R).

We first show that the expressiveness of the proposed
formalism leads the verification of the arrival properties to
be unsolvable. We obtain this result using a restricted ver-
sion of the formalism. Let OpModf,i,= represent the op-
erational models defined in OpMod where dom�, dom=

are finite, domid is infinite, only guard expression allowed
is a scalar comparison, and no data function type is used.
The next result shows that answering an arrival property is
as difficult as answering the halting problem of Turing Ma-
chines.

Lemma 5.2 For every Turing Machine M and an in-
put w, there exists an operational model F defined in
OpModf,i,= and a root configuration C of F such that M
halts on w if and only if an artifact instance x can arrive
into a repository R with respect to F and C.

Proof: [Sketch] The main idea is to show that a Turing ma-
chine can be simulated with an operational model. Each
machine cell can be represented with an artifact instance.
The connection of each cell to its neighbor cells can be rep-
resented with 2 attributes of type domid, pointing to left and
right cells. Cell contents can be stored in another artifact at-
tribute of type dom�. The current state of the machine can
be stored as another artifact instance with one attribute. All
the cells are stored in the same repository except the cur-
rent cell, which is stored in a separate repository. M ’s fi-
nite control can be represented with a task. The task checks
out the current cell, and the current state, and depending
on the content of the cell, it makes the decision about the
next cell to be current, and makes the appropriate check-
ins and check-outs to be ready for the next configuration.
If the finite control specifies that M should halt, then the
task moves an artifact to a special repository. Therefore, an
artifact arrives into the repository if and only if M halts.

Lemma 5.2 leads to the following result:

Theorem 5.3 Given an operational model F defined in
OpMod, a root configuration C of F , an artifact instance
x of C, and a repository R of F , it is not decidable to check
if x can arrive into a repository R with respect to F and C.

Next we show that arrival properties are decidable in a
restricted version of OpMod. Let OpModb,T represent the
operational models that are defined in OpMod such that
the number of artifacts that can be created (i.e., the number
of invocations of the action new is bounded) and the only
guard expression allowed is true. An arrival property can be
checked with a reachability analysis on the execution graph.
During the construction of the execution graph, the parame-
ters of the reset actions should be replaced with all possible
values from the domains to make sure that the reachability
analysis works on all possible cases. Since the domains are
infinite, the number of configurations can be infinite. How-
ever, it can be shown that the values of the artifact attributes
and task variables do not affect the arrival properties when
the only guard allowed is true. Combining this observation



with the restriction that there can be only bounded number
of artifact instances leads to the fact that we only need a
bounded number of values when we construct the execution
graph to check an arrival property. Therefore, we have the
following result:

Theorem 5.4 Given an operational model F defined in
OpModb,T , a root configuration C of F , an artifact in-
stance x of C, and a repository R of F , it is decidable to
check if x can arrive into R with respect to F and C in
EXPTIME.

6 Conclusion and Future Work

We believe the results we presented in this paper will
help the development of automatic static analysis tools for
operational models. Businesses today have to quickly re-
spond to changing business requirements. Having a formal
model for business operations not only can help in the de-
sign of accurate implementations but also can enable the
ability to analyze the effects of a change in the business op-
erations. Such an analysis would ease the evolution of busi-
ness operations and facilitate the quick response to the new
business requirements. Another direction this work can lead
to is the development of formal analysis techniques for busi-
ness performance management. Artifacts provide a good
granularity in terms of a unit of data that a business pro-
cesses; this facilitates the formulation of many performance
related questions at the right granularity with respect to a
business user such as how many guest checks the restau-
rant can process, how long it would take the restaurant to
process a kitchen order from creation to archival.
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