

XML Schema Part 0: Primer Second Edition
W3C Recommendation 28 October 2004

This version:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

Latest version:
http://www.w3.org/TR/xmlschema-0/

Previous version:
http://www.w3.org/TR/2004/PER-xmlschema-0-20040318/

Editors:
David C. Fallside, IBM <fallside@us.ibm.com>
Priscilla Walmsley <pwalmsley@datypic.com> - Second Edition

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative formats: XML and XHTML
with visible change markup. See also translations.

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

XML Schema Part 0: Primer is a non-normative document intended to provide an
easily readable description of the XML Schema facilities, and is oriented towards
quickly understanding how to create schemas using the XML Schema language.
XML Schema Part 1: Structures and XML Schema Part 2: Datatypes provide the
complete normative description of the XML Schema language. This primer
describes the language features through numerous examples which are
complemented by extensive references to the normative texts.

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications

Page 1 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

This is a W3C Recommendation, the first part of the Second Edition of XML
Schema. This document has been reviewed by W3C Members and other
interested parties and has been endorsed by the Director as a W3C
Recommendation. It is a stable document and may be used as reference material.
W3C's role in making the Recommendation is to draw attention to the specification
and to promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

This document has been produced by the W3C XML Schema Working Group as
part of the W3C XML Activity. The goals of the XML Schema language are
discussed in the XML Schema Requirements document. The authors of this
document are the members of the XML Schema Working Group. Different parts of
this specification have different editors.

This document was produced under the 24 January 2002 Current Patent Practice
(CPP) as amended by the W3C Patent Policy Transition Procedure. The Working
Group maintains a public list of patent disclosures relevant to this document; that
page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential
Claim(s) with respect to this specification should disclose the information in
accordance with section 6 of the W3C Patent Policy.

The English version of this specification is the only normative version. Information
about translations of this document is available at
http://www.w3.org/2001/05/xmlschema-translations.

This second edition is not a new version, it merely incorporates the changes
dictated by the corrections to errors found in the first edition as agreed by the XML
Schema Working Group, as a convenience to readers. A separate list of all such
corrections is available at http://www.w3.org/2001/05/xmlschema-errata.

The errata list for this second edition is available at
http://www.w3.org/2004/03/xmlschema-errata.

Please report errors in this document to www-xml-schema-comments@w3.org
(archive).

Table of Contents

1 Introduction
2 Basic Concepts: The Purchase Order
 2.1 The Purchase Order Schema
 2.2 Complex Type Definitions, Element & Attribute Declarations

Page 2 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 2.3 Simple Types
 2.4 Anonymous Type Definitions
 2.5 Element Content
 2.6 Annotations
 2.7 Building Content Models
 2.8 Attribute Groups
 2.9 Nil Values
3 Advanced Concepts I: Namespaces, Schemas & Qualification
 3.1 Target Namespaces & Unqualified Locals
 3.2 Qualified Locals
 3.3 Global vs. Local Declarations
 3.4 Undeclared Target Namespaces
4 Advanced Concepts II: The International Purchase Order
 4.1 A Schema in Multiple Documents
 4.2 Deriving Types by Extension
 4.3 Using Derived Types in Instance Documents
 4.4 Deriving Complex Types by Restriction
 4.5 Redefining Types & Groups
 4.6 Substitution Groups
 4.7 Abstract Elements and Types
 4.8 Controlling the Creation & Use of Derived Types
5 Advanced Concepts III: The Quarterly Report
 5.1 Specifying Uniqueness
 5.2 Defining Keys & their References
 5.3 XML Schema Constraints vs. XML 1.0 ID Attributes
 5.4 Importing Types
 5.5 Any Element, Any Attribute
 5.6 schemaLocation
 5.7 Conformance

Appendices

A Acknowledgements
B Simple Types & their Facets
C Using Entities
D Regular Expressions
E Index
 E.1 XML Schema Elements
 E.2 XML Schema Attributes

1 Introduction

This document, XML Schema Part 0: Primer, provides an easily approachable
description of the XML Schema definition language, and should be used alongside

Page 3 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

the formal descriptions of the language contained in Parts 1 and 2 of the XML
Schema specification. The intended audience of this document includes
application developers whose programs read and write schema documents, and
schema authors who need to know about the features of the language, especially
features that provide functionality above and beyond what is provided by DTDs.
The text assumes that you have a basic understanding of XML 1.0 and
Namespaces in XML. Each major section of the primer introduces new features of
the language, and describes those features in the context of concrete examples.

Basic Concepts: The Purchase Order (§2) covers the basic mechanisms of XML
Schema. It describes how to declare the elements and attributes that appear in
XML documents, the distinctions between simple and complex types, defining
complex types, the use of simple types for element and attribute values, schema
annotation, a simple mechanism for re-using element and attribute definitions, and
nil values.

Advanced Concepts I: Namespaces, Schemas & Qualification (§3), the first
advanced section in the primer, explains the basics of how namespaces are used
in XML and schema documents. This section is important for understanding many
of the topics that appear in the other advanced sections.

Advanced Concepts II: The International Purchase Order (§4), the second
advanced section in the primer, describes mechanisms for deriving types from
existing types, and for controlling these derivations. The section also describes
mechanisms for merging together fragments of a schema from multiple sources,
and for element substitution.

Advanced Concepts III: The Quarterly Report (§5) covers more advanced
features, including a mechanism for specifying uniqueness among attributes and
elements, a mechanism for using types across namespaces, a mechanism for
extending types based on namespaces, and a description of how documents are
checked for conformance.

In addition to the sections just described, the primer contains a number of
appendices that provide detailed reference information on simple types and a
regular expression language.

The primer is a non-normative document, which means that it does not provide a
definitive (from the W3C's point of view) specification of the XML Schema
language. The examples and other explanatory material in this document are
provided to help you understand XML Schema, but they may not always provide
definitive answers. In such cases, you will need to refer to the XML Schema
specification, and to help you do this, we provide many links pointing to the
relevant parts of the specification. More specifically, XML Schema items
mentioned in the primer text are linked to an index [Index (§E)] of element names
and attributes, and a summary table of datatypes, both in the primer. The table
and the index contain links to the relevant sections of XML Schema parts 1 and 2.

Page 4 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

2 Basic Concepts: The Purchase Order

The purpose of a schema is to define a class of XML documents, and so the term
"instance document" is often used to describe an XML document that conforms to
a particular schema. In fact, neither instances nor schemas need to exist as
documents per se -- they may exist as streams of bytes sent between applications,
as fields in a database record, or as collections of XML Infoset "Information Items"
-- but to simplify the primer, we have chosen to always refer to instances and
schemas as if they are documents and files.

Let us start by considering an instance document in a file called po.xml. It
describes a purchase order generated by a home products ordering and billing
application:

Example
The Purchase Order, po.xml
<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild<!/comment>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

Page 5 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

The purchase order consists of a main element, purchaseOrder, and the
subelements shipTo, billTo, comment, and items. These subelements
(except comment) in turn contain other subelements, and so on, until a
subelement such as USPrice contains a number rather than any subelements.
Elements that contain subelements or carry attributes are said to have complex
types, whereas elements that contain numbers (and strings, and dates, etc.) but
do not contain any subelements are said to have simple types. Some elements
have attributes; attributes always have simple types.

The complex types in the instance document, and some of the simple types, are
defined in the schema for purchase orders. The other simple types are defined as
part of XML Schema's repertoire of built-in simple types.

Before going on to examine the purchase order schema, we digress briefly to
mention the association between the instance document and the purchase order
schema. As you can see by inspecting the instance document, the purchase order
schema is not mentioned. An instance is not actually required to reference a
schema, and although many will, we have chosen to keep this first section simple,
and to assume that any processor of the instance document can obtain the
purchase order schema without any information from the instance document. In
later sections, we will introduce explicit mechanisms for associating instances and
schemas.

2.1 The Purchase Order Schema

The purchase order schema is contained in the file po.xsd:

Example
The Purchase Order Schema, po.xsd
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Purchase order schema for Example.com.
 Copyright 2000 Example.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>

Page 6 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>

 <xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Stock Keeping Unit, a code for identifying products -->
 <xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

The purchase order schema consists of a schema element and a variety of
subelements, most notably element, complexType, and simpleType which
determine the appearance of elements and their content in instance documents.

Each of the elements in the schema has a prefix xsd: which is associated with the

Page 7 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

XML Schema namespace through the declaration,
xmlns:xsd="http://www.w3.org/2001/XMLSchema", that appears in the
schema element. The prefix xsd: is used by convention to denote the XML
Schema namespace, although any prefix can be used. The same prefix, and
hence the same association, also appears on the names of built-in simple types,
e.g. xsd:string. The purpose of the association is to identify the elements and
simple types as belonging to the vocabulary of the XML Schema language rather
than the vocabulary of the schema author. For the sake of clarity in the text, we
just mention the names of elements and simple types (e.g. simpleType), and
omit the prefix.

2.2 Complex Type Definitions, Element & Attribute Declarations
 2.2.1 Occurrence Constraints
 2.2.2 Global Elements & Attributes
 2.2.3 Naming Conflicts

In XML Schema, there is a basic difference between complex types which allow
elements in their content and may carry attributes, and simple types which cannot
have element content and cannot carry attributes. There is also a major distinction
between definitions which create new types (both simple and complex), and
declarations which enable elements and attributes with specific names and types
(both simple and complex) to appear in document instances. In this section, we
focus on defining complex types and declaring the elements and attributes that
appear within them.

New complex types are defined using the complexType element and such
definitions typically contain a set of element declarations, element references, and
attribute declarations. The declarations are not themselves types, but rather an
association between a name and the constraints which govern the appearance of
that name in documents governed by the associated schema. Elements are
declared using the element element, and attributes are declared using the
attribute element. For example, USAddress is defined as a complex type, and
within the definition of USAddress we see five element declarations and one
attribute declaration:

Example
Defining the USAddress Type
<xsd:complexType name="USAddress" >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

Page 8 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

</xsd:complexType>

The consequence of this definition is that any element appearing in an instance
whose type is declared to be USAddress (e.g. shipTo in po.xml) must consist of
five elements and one attribute. These elements must be called name, street,
city, state and zip as specified by the values of the declarations' name
attributes, and the elements must appear in the same sequence (order) in which
they are declared. The first four of these elements will each contain a string, and
the fifth will contain a number. The element whose type is declared to be
USAddress may appear with an attribute called country which must contain the
string US.

The USAddress definition contains only declarations involving the simple types:
string, decimal and NMTOKEN. In contrast, the PurchaseOrderType definition
contains element declarations involving complex types, e.g. USAddress, although
note that both declarations use the same type attribute to identify the type,
regardless of whether the type is simple or complex.

Example
Defining PurchaseOrderType
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

In defining PurchaseOrderType, two of the element declarations, for shipTo and
billTo, associate different element names with the same complex type, namely
USAddress. The consequence of this definition is that any element appearing in an
instance document (e.g. po.xml) whose type is declared to be
PurchaseOrderType must consist of elements named shipTo and billTo,
each containing the five subelements (name, street, city, state and zip) that
were declared as part of USAddress. The shipTo and billTo elements may also
carry the country attribute that was declared as part of USAddress.

The PurchaseOrderType definition contains an orderDate attribute declaration
which, like the country attribute declaration, identifies a simple type. In fact, all
attribute declarations must reference simple types because, unlike element
declarations, attributes cannot contain other elements or other attributes.

Page 9 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

The element declarations we have described so far have each associated a name
with an existing type definition. Sometimes it is preferable to use an existing
element rather than declare a new element, for example:

Example
<xsd:element ref="comment" minOccurs="0"/>

This declaration references an existing element, comment, that was declared
elsewhere in the purchase order schema. In general, the value of the ref attribute
must reference a global element, i.e. one that has been declared under schema
rather than as part of a complex type definition. The consequence of this
declaration is that an element called comment may appear in an instance
document, and its content must be consistent with that element's type, in this case,
string.

2.2.1 Occurrence Constraints

The comment element is optional within PurchaseOrderType because the value
of the minOccurs attribute in its declaration is 0. In general, an element is
required to appear when the value of minOccurs is 1 or more. The maximum
number of times an element may appear is determined by the value of a
maxOccurs attribute in its declaration. This value may be a positive integer such
as 41, or the term unbounded to indicate there is no maximum number of
occurrences. The default value for both the minOccurs and the maxOccurs
attributes is 1. Thus, when an element such as comment is declared without a
maxOccurs attribute, the element may not occur more than once. Be sure that if
you specify a value for only the minOccurs attribute, it is less than or equal to the
default value of maxOccurs, i.e. it is 0 or 1. Similarly, if you specify a value for
only the maxOccurs attribute, it must be greater than or equal to the default value
of minOccurs, i.e. 1 or more. If both attributes are omitted, the element must
appear exactly once.

Attributes may appear once or not at all, but no other number of times, and so the
syntax for specifying occurrences of attributes is different than the syntax for
elements. In particular, attributes can be declared with a use attribute to indicate
whether the attribute is required (see for example, the partNum attribute
declaration in po.xsd), optional, or even prohibited.

Default values of both attributes and elements are declared using the default
attribute, although this attribute has a slightly different consequence in each case.
When an attribute is declared with a default value, the value of the attribute is
whatever value appears as the attribute's value in an instance document; if the
attribute does not appear in the instance document, the schema processor

Page 10 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

provides the attribute with a value equal to that of the default attribute. Note that
default values for attributes only make sense if the attributes themselves are
optional, and so it is an error to specify both a default value and anything other
than a value of optional for use.

The schema processor treats defaulted elements slightly differently. When an
element is declared with a default value, the value of the element is whatever
value appears as the element's content in the instance document; if the element
appears without any content, the schema processor provides the element with a
value equal to that of the default attribute. However, if the element does not
appear in the instance document, the schema processor does not provide the
element at all. In summary, the differences between element and attribute defaults
can be stated as: Default attribute values apply when attributes are missing, and
default element values apply when elements are empty.

The fixed attribute is used in both attribute and element declarations to ensure
that the attributes and elements are set to particular values. For example, po.xsd
contains a declaration for the country attribute, which is declared with a fixed
value US. This declaration means that the appearance of a country attribute in
an instance document is optional (the default value of use is optional), although
if the attribute does appear, its value must be US, and if the attribute does not
appear, the schema processor will provide a country attribute with the value US.
Note that the concepts of a fixed value and a default value are mutually exclusive,
and so it is an error for a declaration to contain both fixed and default
attributes.

The values of the attributes used in element and attribute declarations to constrain
their occurrences are summarized in Table 1.

Table 1. Occurrence Constraints for Elements and Attributes
Elements

(minOccurs,
maxOccurs)
fixed, default

Attributes
use, fixed,

default
Notes

(1, 1) -, - required, -, - element/attribute must appear once, it may have
any value

(1, 1) 37, - required,
37, -

element/attribute must appear once, its value must
be 37

(2, unbounded)
37, - n/a

element must appear twice or more, its value must
be 37; in general, minOccurs and maxOccurs
values may be positive integers, and maxOccurs
value may also be "unbounded"

element/attribute may appear once, it may have

Page 11 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

2.2.2 Global Elements & Attributes

Global elements, and global attributes, are created by declarations that appear as
the children of the schema element. Once declared, a global element or a global
attribute can be referenced in one or more declarations using the ref attribute as
described above. A declaration that references a global element enables the
referenced element to appear in the instance document in the context of the
referencing declaration. So, for example, the comment element appears in
po.xml at the same level as the shipTo, billTo and items elements because
the declaration that references comment appears in the complex type definition at
the same level as the declarations of the other three elements.

The declaration of a global element also enables the element to appear at the top-
level of an instance document. Hence purchaseOrder, which is declared as a
global element in po.xsd, can appear as the top-level element in po.xml. Note
that this rationale will also allow a comment element to appear as the top-level
element in a document like po.xml.

(0, 1) -, - optional, -, - any value

(0, 1) 37, - n/a

element may appear once, if it does not appear it
is not provided; if it does appear and it is empty, its
value is 37; if it does appear and it is not empty, its
value must be 37

n/a optional, 37,
-

attribute may appear once, if it does appear its
value must be 37, if it does not appear its value is
37

(0, 1) -, 37 n/a
element may appear once; if it does not appear it
is not provided; if it does appear and it is empty, its
value is 37; otherwise its value is that given

n/a optional, -,
37

attribute may appear once; if it does not appear its
value is 37, otherwise its value is that given

(0, 2) -, 37 n/a

element may appear once, twice, or not at all; if
the element does not appear it is not provided; if it
does appear and it is empty, its value is 37;
otherwise its value is that given; in general,
minOccurs and maxOccurs values may be positive
integers, and maxOccurs value may also be
"unbounded"

(0, 0) -, - prohibited, -
, - element/attribute must not appear

Note that neither minOccurs, maxOccurs, nor use may appear in the
declarations of global elements and attributes.

Page 12 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

There are a number of caveats concerning the use of global elements and
attributes. One caveat is that global declarations cannot contain references; global
declarations must identify simple and complex types directly. Put concretely,
global declarations cannot contain the ref attribute, they must use the type
attribute (or, as we describe shortly, be followed by an anonymous type definition).
A second caveat is that cardinality constraints cannot be placed on global
declarations, although they can be placed on local declarations that reference
global declarations. In other words, global declarations cannot contain the
attributes minOccurs, maxOccurs, or use.

2.2.3 Naming Conflicts

We have now described how to define new complex types (e.g.
PurchaseOrderType), declare elements (e.g. purchaseOrder) and declare
attributes (e.g. orderDate). These activities generally involve naming, and so the
question naturally arises: What happens if we give two things the same name?
The answer depends upon the two things in question, although in general the
more similar are the two things, the more likely there will be a conflict.

Here are some examples to illustrate when same names cause problems. If the
two things are both types, say we define a complex type called USStates and a
simple type called USStates, there is a conflict. If the two things are a type and an
element or attribute, say we define a complex type called USAddress and we
declare an element called USAddress, there is no conflict. If the two things are
elements within different types (i.e. not global elements), say we declare one
element called name as part of the USAddress type and a second element called
name as part of the Item type, there is no conflict. (Such elements are sometimes
called local element declarations.) Finally, if the two things are both types and you
define one and XML Schema has defined the other, say you define a simple type
called decimal, there is no conflict. The reason for the apparent contradiction in the
last example is that the two types belong to different namespaces. We explore the
use of namespaces in schema in a later section.

2.3 Simple Types
 2.3.1 List Types
 2.3.2 Union Types

The purchase order schema declares several elements and attributes that have
simple types. Some of these simple types, such as string and decimal, are
built in to XML Schema, while others are derived from the built-in's. For example,
the partNum attribute has a type called SKU (Stock Keeping Unit) that is derived
from string. Both built-in simple types and their derivations can be used in all
element and attribute declarations. Table 2 lists all the simple types built in to XML
Schema, along with examples of the different types.

Page 13 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Table 2. Simple Types Built In to XML Schema
Simple Type Examples (delimited by commas) Notes
string Confirm this is electric
normalizedString Confirm this is electric see (3)
token Confirm this is electric see (4)
base64Binary GpM7
hexBinary 0FB7
integer ...-1, 0, 1, ... see (2)
positiveInteger 1, 2, ... see (2)
negativeInteger ... -2, -1 see (2)
nonNegativeInteger 0, 1, 2, ... see (2)
nonPositiveInteger ... -2, -1, 0 see (2)

long -9223372036854775808, ... -1, 0, 1, ...
9223372036854775807 see (2)

unsignedLong 0, 1, ... 18446744073709551615 see (2)
int -2147483648, ... -1, 0, 1, ... 2147483647 see (2)
unsignedInt 0, 1, ...4294967295 see (2)
short -32768, ... -1, 0, 1, ... 32767 see (2)
unsignedShort 0, 1, ... 65535 see (2)
byte -128, ...-1, 0, 1, ... 127 see (2)
unsignedByte 0, 1, ... 255 see (2)
decimal -1.23, 0, 123.4, 1000.00 see (2)

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

equivalent to
single-precision
32-bit floating
point, NaN is "not
a number", see
(2)

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

equivalent to
double-precision
64-bit floating
point, see (2)

boolean true, false, 1, 0

duration P1Y2M3DT10H30M12.3S

1 year, 2 months,
3 days, 10 hours,
30 minutes, and
12.3 seconds

May 31st 1999 at

Page 14 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

dateTime 1999-05-31T13:20:00.000-05:00

1.20pm Eastern
Standard Time
which is 5 hours
behind Co-
Ordinated
Universal Time,
see (2)

date 1999-05-31 see (2)
time 13:20:00.000, 13:20:00.000-05:00 see (2)
gYear 1999 1999, see (2) (5)

gYearMonth 1999-02

the month of
February 1999,
regardless of the
number of days,
see (2) (5)

gMonth --05 May, see (2) (5)

gMonthDay --05-31 every May 31st,
see (2) (5)

gDay ---31 the 31st day, see
(2) (5)

Name shipTo XML 1.0 Name
type

QName po:USAddress XML Namespace
QName

NCName USAddress

XML Namespace
NCName, i.e. a
QName without
the prefix and
colon

anyURI
http://www.example.com/,
http://www.example.com/doc.html#ID5

language en-GB, en-US, fr

valid values for
xml:lang as
defined in XML
1.0

ID
XML 1.0 ID
attribute type,
see (1)

IDREF
XML 1.0 IDREF
attribute type,
see (1)

Page 15 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

New simple types are defined by deriving them from existing simple types (built-
in's and derived). In particular, we can derive a new simple type by restricting an
existing simple type, in other words, the legal range of values for the new type are
a subset of the existing type's range of values. We use the simpleType element
to define and name the new simple type. We use the restriction element to
indicate the existing (base) type, and to identify the "facets" that constrain the
range of values. A complete list of facets is provided in Appendix B.

IDREFS
XML 1.0 IDREFS
attribute type,
see (1)

ENTITY
XML 1.0 ENTITY
attribute type,
see (1)

ENTITIES

XML 1.0
ENTITIES
attribute type,
see (1)

NOTATION

XML 1.0
NOTATION
attribute type,
see (1)

NMTOKEN
US,
Brésil

XML 1.0
NMTOKEN
attribute type,
see (1)

NMTOKENS
US UK,
Brésil Canada Mexique

XML 1.0
NMTOKENS
attribute type, i.e.
a whitespace
separated list of
NMTOKEN's,
see (1)

Notes: (1) To retain compatibility between XML Schema and XML 1.0 DTDs, the
simple types ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN,
NMTOKENS should only be used in attributes. (2) A value of this type can be
represented by more than one lexical format, e.g. 100 and 1.0E2 are both valid
float formats representing "one hundred". However, rules have been established
for this type that define a canonical lexical format, see XML Schema Part 2. (3)
Newline, tab and carriage-return characters in a normalizedString type are
converted to space characters before schema processing. (4) As
normalizedString, and adjacent space characters are collapsed to a single space
character, and leading and trailing spaces are removed. (5) The "g" prefix signals
time periods in the Gregorian calendar.

Page 16 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Suppose we wish to create a new type of integer called myInteger whose range
of values is between 10000 and 99999 (inclusive). We base our definition on the
built-in simple type integer, whose range of values also includes integers less
than 10000 and greater than 99999. To define myInteger, we restrict the range
of the integer base type by employing two facets called minInclusive and
maxInclusive:

Example
Defining myInteger, Range 10000-99999
<xsd:simpleType name="myInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

The example shows one particular combination of a base type and two facets
used to define myInteger, but a look at the list of built-in simple types and their
facets (Appendix B) should suggest other viable combinations.

The purchase order schema contains another, more elaborate, example of a
simple type definition. A new simple type called SKU is derived (by restriction) from
the simple type string. Furthermore, we constrain the values of SKU using a
facet called pattern in conjunction with the regular expression "\d{3}-[A-Z]
{2}" that is read "three digits followed by a hyphen followed by two upper-case
ASCII letters":

Example
Defining the Simple Type "SKU"
<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>

This regular expression language is described more fully in Appendix D.

XML Schema defines twelve facets which are listed in Appendix B. Among these,
the enumeration facet is particularly useful and it can be used to constrain the
values of almost every simple type, except the boolean type. The enumeration
facet limits a simple type to a set of distinct values. For example, we can use the
enumeration facet to define a new simple type called USState, derived from
string, whose value must be one of the standard US state abbreviations:

Page 17 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Example
Using the Enumeration Facet
<xsd:simpleType name="USState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <xsd:enumeration value="AR"/>
 <!-- and so on ... -->
 </xsd:restriction>
</xsd:simpleType>

USState would be a good replacement for the string type currently used in the
state element declaration. By making this replacement, the legal values of a
state element, i.e. the state subelements of billTo and shipTo, would be
limited to one of AK, AL, AR, etc. Note that the enumeration values specified for a
particular type must be unique.

2.3.1 List Types

XML Schema has the concept of a list type, in addition to the so-called atomic
types that constitute most of the types listed in Table 2. (Atomic types, list types,
and the union types described in the next section are collectively called simple
types.) The value of an atomic type is indivisible from XML Schema's perspective.
For example, the NMTOKEN value US is indivisible in the sense that no part of US,
such as the character "S", has any meaning by itself. In contrast, list types are
comprised of sequences of atomic types and consequently the parts of a
sequence (the "atoms") themselves are meaningful. For example, NMTOKENS is a
list type, and an element of this type would be a white-space delimited list of
NMTOKEN's, such as "US UK FR". XML Schema has three built-in list types, they
are NMTOKENS, IDREFS, and ENTITIES.

In addition to using the built-in list types, you can create new list types by
derivation from existing atomic types. (You cannot create list types from existing
list types, nor from complex types.) For example, to create a list of myInteger's:

Example
Creating a List of myInteger's
<xsd:simpleType name="listOfMyIntType">
 <xsd:list itemType="myInteger"/>
</xsd:simpleType>

And an element in an instance document whose content conforms to
listOfMyIntType is:

Page 18 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Example
<listOfMyInt>20003 15037 95977 95945</listOfMyInt>

Several facets can be applied to list types: length, minLength, maxLength,
pattern, and enumeration. For example, to define a list of exactly six US
states (SixUSStates), we first define a new list type called USStateList from
USState, and then we derive SixUSStates by restricting USStateList to only
six items:

Example
List Type for Six US States
<xsd:simpleType name="USStateList">
 <xsd:list itemType="USState"/>
</xsd:simpleType>

<xsd:simpleType name="SixUSStates">
 <xsd:restriction base="USStateList">
 <xsd:length value="6"/>
 </xsd:restriction>
</xsd:simpleType>

Elements whose type is SixUSStates must have six items, and each of the six
items must be one of the (atomic) values of the enumerated type USState, for
example:

Example
<sixStates>PA NY CA NY LA AK</sixStates>

Note that it is possible to derive a list type from the atomic type string. However,
a string may contain white space, and white space delimits the items in a list
type, so you should be careful using list types whose base type is string. For
example, suppose we have defined a list type with a length facet equal to 3, and
base type string, then the following 3 item list is legal:

Example
Asie Europe Afrique

But the following 3 "item" list is illegal:

Example

Page 19 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Asie Europe Amérique Latine

Even though "Amérique Latine" may exist as a single string outside of the list, when
it is included in the list, the whitespace between Amérique and Latine effectively
creates a fourth item, and so the latter example will not conform to the 3-item list
type.

2.3.2 Union Types

Atomic types and list types enable an element or an attribute value to be one or
more instances of one atomic type. In contrast, a union type enables an element or
attribute value to be one or more instances of one type drawn from the union of
multiple atomic and list types. To illustrate, we create a union type for representing
American states as singleton letter abbreviations or lists of numeric codes. The
zipUnion union type is built from one atomic type and one list type:

Example
Union Type for Zip Codes
<xsd:simpleType name="zipUnion">
 <xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>

When we define a union type, the memberTypes attribute value is a list of all the
types in the union.

Now, assuming we have declared an element called zips of type zipUnion, valid
instances of the element are:

Example
<zips>CA</zips>
<zips>95630 95977 95945</zips>
<zips>AK</zips>

Two facets, pattern and enumeration, can be applied to a union type.

2.4 Anonymous Type Definitions

Schemas can be constructed by defining sets of named types such as
PurchaseOrderType and then declaring elements such as purchaseOrder that
reference the types using the type= construction. This style of schema
construction is straightforward but it can be unwieldy, especially if you define many
types that are referenced only once and contain very few constraints. In these

Page 20 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

cases, a type can be more succinctly defined as an anonymous type which saves
the overhead of having to be named and explicitly referenced.

The definition of the type Items in po.xsd contains two element declarations that
use anonymous types (item and quantity). In general, you can identify
anonymous types by the lack of a type= in an element (or attribute) declaration,
and by the presence of an un-named (simple or complex) type definition:

Example
Two Anonymous Type Definitions
<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

In the case of the item element, it has an anonymous complex type consisting of
the elements productName, quantity, USPrice, comment, and shipDate,
and an attribute called partNum. In the case of the quantity element, it has an
anonymous simple type derived from positiveInteger whose value ranges
between 1 and 99.

2.5 Element Content
 2.5.1 Complex Types from Simple Types
 2.5.2 Mixed Content
 2.5.3 Empty Content
 2.5.4 anyType

The purchase order schema has many examples of elements containing other
elements (e.g. items), elements having attributes and containing other elements

Page 21 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

(e.g. shipTo), and elements containing only a simple type of value (e.g.
USPrice). However, we have not seen an element having attributes but
containing only a simple type of value, nor have we seen an element that contains
other elements mixed with character content, nor have we seen an element that
has no content at all. In this section we'll examine these variations in the content
models of elements.

2.5.1 Complex Types from Simple Types

Let us first consider how to declare an element that has an attribute and contains a
simple value. In an instance document, such an element might appear as:

Example
<internationalPrice currency="EUR">423.46</internationalPrice>

The purchase order schema declares a USPrice element that is a starting point:

Example
<xsd:element name="USPrice" type="decimal"/>

Now, how do we add an attribute to this element? As we have said before, simple
types cannot have attributes, and decimal is a simple type. Therefore, we must
define a complex type to carry the attribute declaration. We also want the content
to be simple type decimal. So our original question becomes: How do we define
a complex type that is based on the simple type decimal? The answer is to
derive a new complex type from the simple type decimal:

Example
Deriving a Complex Type from a Simple Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

We use the complexType element to start the definition of a new (anonymous)
type. To indicate that the content model of the new type contains only character
data and no elements, we use a simpleContent element. Finally, we derive the

Page 22 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

new type by extending the simple decimal type. The extension consists of adding
a currency attribute using a standard attribute declaration. (We cover type
derivation in detail in Advanced Concepts II: The International Purchase Order
(§4).) The internationalPrice element declared in this way will appear in an
instance as shown in the example at the beginning of this section.

2.5.2 Mixed Content

The construction of the purchase order schema may be characterized as elements
containing subelements, and the deepest subelements contain character data.
XML Schema also provides for the construction of schemas where character data
can appear alongside subelements, and character data is not confined to the
deepest subelements.

To illustrate, consider the following snippet from a customer letter that uses some
of the same elements as the purchase order:

Example
Snippet of Customer Letter
<letterBody>
<salutation>Dear Mr.<name>Robert Smith</name>.</salutation>
Your order of <quantity>1</quantity> <productName>Baby
Monitor</productName> shipped from our warehouse on
<shipDate>1999-05-21</shipDate>.
</letterBody>

Notice the text appearing between elements and their child elements. Specifically,
text appears between the elements salutation, quantity, productName and
shipDate which are all children of letterBody, and text appears around the
element name which is the child of a child of letterBody. The following snippet
of a schema declares letterBody:

Example
Snippet of Schema for Customer Letter
<xsd:element name="letterBody">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="salutation">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="quantity" type="xsd:positiveInteger"/>

Page 23 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 <!-- etc. -->
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The elements appearing in the customer letter are declared, and their types are
defined using the element and complexType element constructions we have
seen before. To enable character data to appear between the child-elements of
letterBody, the mixed attribute on the type definition is set to true.

Note that the mixed model in XML Schema differs fundamentally from the mixed
model in XML 1.0. Under the XML Schema mixed model, the order and number of
child elements appearing in an instance must agree with the order and number of
child elements specified in the model. In contrast, under the XML 1.0 mixed model,
the order and number of child elements appearing in an instance cannot be
constrained. In summary, XML Schema provides full validation of mixed models in
contrast to the partial schema validation provided by XML 1.0.

2.5.3 Empty Content

Now suppose that we want the internationalPrice element to convey both the
unit of currency and the price as attribute values rather than as separate attribute
and content values. For example:

Example
<internationalPrice currency="EUR" value="423.46"/>

Such an element has no content at all; its content model is empty. To define a type
whose content is empty, we essentially define a type that allows only elements in its
content, but we do not actually declare any elements and so the type's content
model is empty:

Example
An Empty Complex Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

Page 24 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

</xsd:element>

In this example, we define an (anonymous) type having complexContent, i.e.
only elements. The complexContent element signals that we intend to restrict or
extend the content model of a complex type, and the restriction of anyType
declares two attributes but does not introduce any element content (see Deriving
Complex Types by Restriction (§4.4) for more details on restriction). The
internationalPrice element declared in this way may legitimately appear in an
instance as shown in the example above.

The preceding syntax for an empty-content element is relatively verbose, and it is
possible to declare the internationalPrice element more compactly:

Example
Shorthand for an Empty Complex Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:complexType>
</xsd:element>

This compact syntax works because a complex type defined without any
simpleContent or complexContent is interpreted as shorthand for complex
content that restricts anyType.

2.5.4 anyType

The anyType represents an abstraction called the ur-type which is the base type
from which all simple and complex types are derived. An anyType type does not
constrain its content in any way. It is possible to use anyType like other types, for
example:

Example
<xsd:element name="anything" type="xsd:anyType"/>

The content of the element declared in this way is unconstrained, so the element
value may be 423.46, but it may be any other sequence of characters as well, or
indeed a mixture of characters and elements. In fact, anyType is the default type
when none is specified, so the above could also be written as follows:

Example

Page 25 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

<xsd:element name="anything"/>

If unconstrained element content is needed, for example in the case of elements
containing prose which requires embedded markup to support internationalization,
then the default declaration or a slightly restricted form of it may be suitable. The
text type described in Any Element, Any Attribute (§5.5) is an example of such a
type that is suitable for such purposes.

2.6 Annotations

XML Schema provides three elements for annotating schemas for the benefit of
both human readers and applications. In the purchase order schema, we put a
basic schema description and copyright information inside the documentation
element, which is the recommended location for human readable material. We
recommend you use the xml:lang attribute with any documentation elements
to indicate the language of the information. Alternatively, you may indicate the
language of all information in a schema by placing an xml:lang attribute on the
schema element.

The appinfo element, which we did not use in the purchase order schema, can be
used to provide information for tools, stylesheets and other applications. An
interesting example using appinfo is a schema that describes the simple types in
XML Schema Part 2: Datatypes. Information describing this schema, e.g. which
facets are applicable to particular simple types, is represented inside appinfo
elements, and this information was used by an application to automatically generate
text for the XML Schema Part 2 document.

Both documentation and appinfo appear as subelements of annotation,
which may itself appear at the beginning of most schema constructions. To
illustrate, the following example shows annotation elements appearing at the
beginning of an element declaration and a complex type definition:

Example
Annotations in Element Declaration & Complex Type Definition
<xsd:element name="internationalPrice">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 element declared with anonymous type
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 empty anonymous type with 2 attributes
 </xsd:documentation>

Page 26 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

The annotation element may also appear at the beginning of other schema
constructions such as those indicated by the elements schema, simpleType, and
attribute.

2.7 Building Content Models

The definitions of complex types in the purchase order schema all declare
sequences of elements that must appear in the instance document. The occurrence
of individual elements declared in the so-called content models of these types may
be optional, as indicated by a 0 value for the attribute minOccurs (e.g. in
comment), or be otherwise constrained depending upon the values of minOccurs
and maxOccurs. XML Schema also provides constraints that apply to groups of
elements appearing in a content model. These constraints mirror those available in
XML 1.0 plus some additional constraints. Note that the constraints do not apply to
attributes.

XML Schema enables groups of elements to be defined and named, so that the
elements can be used to build up the content models of complex types (thus
mimicking common usage of parameter entities in XML 1.0). Un-named groups of
elements can also be defined, and along with elements in named groups, they can
be constrained to appear in the same order (sequence) as they are declared.
Alternatively, they can be constrained so that only one of the elements may appear
in an instance.

To illustrate, we introduce two groups into the PurchaseOrderType definition
from the purchase order schema so that purchase orders may contain either
separate shipping and billing addresses, or a single address for those cases in
which the shippee and billee are co-located:

Example
Nested Choice and Sequence Groups
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref="shipAndBill"/>
 <xsd:element name="singleUSAddress" type="USAddress"/>

Page 27 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 </xsd:choice>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:group id="shipAndBill">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 </xsd:sequence>
</xsd:group>

The choice group element allows only one of its children to appear in an instance.
One child is an inner group element that references the named group
shipAndBill consisting of the element sequence shipTo, billTo, and the
second child is a singleUSAddress. Hence, in an instance document, the
purchaseOrder element must contain either a shipTo element followed by a
billTo element or a singleUSAddress element. The choice group is followed
by the comment and items element declarations, and both the choice group and
the element declarations are children of a sequence group. The effect of these
various groups is that the address element(s) must be followed by comment and
items elements in that order.

There exists a third option for constraining elements in a group: All the elements in
the group may appear once or not at all, and they may appear in any order. The
all group (which provides a simplified version of the SGML &-Connector) is limited
to the top-level of any content model. Moreover, the group's children must all be
individual elements (no groups), and no element in the content model may appear
more than once, i.e. the permissible values of minOccurs and maxOccurs are 0
and 1. For example, to allow the child elements of purchaseOrder to appear in
any order, we could redefine PurchaseOrderType as:

Example
An 'All' Group
<xsd:complexType name="PurchaseOrderType">
 <xsd:all>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

Page 28 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

By this definition, a comment element may optionally appear within
purchaseOrder, and it may appear before or after any shipTo, billTo and
items elements, but it can appear only once. Moreover, the stipulations of an all
group do not allow us to declare an element such as comment outside the group
as a means of enabling it to appear more than once. XML Schema stipulates that
an all group must appear as the sole child at the top of a content model. In other
words, the following is illegal:

Example
Illegal Example with an 'All' Group
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:all>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

Finally, named and un-named groups that appear in content models (represented
by group and choice, sequence, all respectively) may carry minOccurs and
maxOccurs attributes. By combining and nesting the various groups provided by
XML Schema, and by setting the values of minOccurs and maxOccurs, it is
possible to represent any content model expressible with an XML 1.0 DTD.
Furthermore, the all group provides additional expressive power.

2.8 Attribute Groups

Suppose we want to provide more information about each item in a purchase
order, for example, each item's weight and preferred shipping method. We can
accomplish this by adding weightKg and shipBy attribute declarations to the
item element's (anonymous) type definition:

Example
Adding Attributes to the Inline Type Definition
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">

Page 29 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 <!-- add weightKg and shipBy attributes -->
 <xsd:attribute name="weightKg" type="xsd:decimal"/>
 <xsd:attribute name="shipBy">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="air"/>
 <xsd:enumeration value="land"/>
 <xsd:enumeration value="any"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
</xsd:element>

Alternatively, we can create a named attribute group containing all the desired
attributes of an item element, and reference this group by name in the item
element declaration:

Example
Adding Attributes Using an Attribute Group
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>

 <!-- attributeGroup replaces individual declarations -->
 <xsd:attributeGroup ref="ItemDelivery"/>
 </xsd:complexType>
</xsd:element>

Page 30 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

<xsd:attributeGroup id="ItemDelivery">
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 <xsd:attribute name="weightKg" type="xsd:decimal"/>
 <xsd:attribute name="shipBy">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="air"/>
 <xsd:enumeration value="land"/>
 <xsd:enumeration value="any"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
</xsd:attributeGroup>

Using an attribute group in this way can improve the readability of schemas, and
facilitates updating schemas because an attribute group can be defined and edited
in one place and referenced in multiple definitions and declarations. These
characteristics of attribute groups make them similar to parameter entities in XML
1.0. Note that an attribute group may contain other attribute groups. Note also that
both attribute declarations and attribute group references must appear at the end of
complex type definitions.

2.9 Nil Values

One of the purchase order items listed in po.xml, the Lawnmower, does not have
a shipDate element. Within the context of our scenario, the schema author may
have intended such absences to indicate items not yet shipped. But in general, the
absence of an element does not have any particular meaning: It may indicate that
the information is unknown, or not applicable, or the element may be absent for
some other reason. Sometimes it is desirable to represent an unshipped item,
unknown information, or inapplicable information explicitly with an element, rather
than by an absent element. For example, it may be desirable to represent a "null"
value being sent to or from a relational database with an element that is present.
Such cases can be represented using XML Schema's nil mechanism which enables
an element to appear with or without a non-nil value.

XML Schema's nil mechanism involves an "out of band" nil signal. In other words,
there is no actual nil value that appears as element content, instead there is an
attribute to indicate that the element content is nil. To illustrate, we modify the
shipDate element declaration so that nils can be signalled:

Example
<xsd:element name="shipDate" type="xsd:date" nillable="true"/>

And to explicitly represent that shipDate has a nil value in the instance document,
we set the nil attribute (from the XML Schema namespace for instances) to true:

Page 31 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Example
<shipDate xsi:nil="true"></shipDate>

The nil attribute is defined as part of the XML Schema namespace for instances,
http://www.w3.org/2001/XMLSchema-instance, and so it must appear in
the instance document with a prefix (such as xsi:) associated with that
namespace. (As with the xsd: prefix, the xsi: prefix is used by convention only.)
Note that the nil mechanism applies only to element values, and not to attribute
values. An element with xsi:nil="true" may not have any element content but
it may still carry attributes.

3 Advanced Concepts I: Namespaces, Schemas &
Qualification

A schema can be viewed as a collection (vocabulary) of type definitions and
element declarations whose names belong to a particular namespace called a
target namespace. Target namespaces enable us to distinguish between
definitions and declarations from different vocabularies. For example, target
namespaces would enable us to distinguish between the declaration for element
in the XML Schema language vocabulary, and a declaration for element in a
hypothetical chemistry language vocabulary. The former is part of the
http://www.w3.org/2001/XMLSchema target namespace, and the latter is
part of another target namespace.

When we want to check that an instance document conforms to one or more
schemas (through a process called schema validation), we need to identify which
element and attribute declarations and type definitions in the schemas should be
used to check which elements and attributes in the instance document. The target
namespace plays an important role in the identification process. We examine the
role of the target namespace in the next section.

The schema author also has several options that affect how the identities of
elements and attributes are represented in instance documents. More specifically,
the author can decide whether or not the appearance of locally declared elements
and attributes in an instance must be qualified by a namespace, using either an
explicit prefix or implicitly by default. The schema author's choice regarding
qualification of local elements and attributes has a number of implications
regarding the structures of schemas and instance documents, and we examine
some of these implications in the following sections.

3.1 Target Namespaces & Unqualified Locals

In a new version of the purchase order schema, po1.xsd, we explicitly declare a

Page 32 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

target namespace, and specify that both locally defined elements and locally
defined attributes must be unqualified. The target namespace in po1.xsd is
http://www.example.com/PO1, as indicated by the value of the
targetNamespace attribute.

Qualification of local elements and attributes can be globally specified by a pair of
attributes, elementFormDefault and attributeFormDefault, on the
schema element, or can be specified separately for each local declaration using
the form attribute. All such attributes' values may each be set to unqualified or
qualified, to indicate whether or not locally declared elements and attributes
must be unqualified.

In po1.xsd we globally specify the qualification of elements and attributes by
setting the values of both elementFormDefault and attributeFormDefault
to unqualified. Strictly speaking, these settings are unnecessary because the
values are the defaults for the two attributes; we make them here to highlight the
contrast between this case and other cases we describe later.

Example
Purchase Order Schema with Target Namespace, po1.xsd
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">

 <element name="purchaseOrder" type="po:PurchaseOrderType"/>
 <element name="comment" type="string"/>

 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="po:USAddress"/>
 <element name="billTo" type="po:USAddress"/>
 <element ref="po:comment" minOccurs="0"/>
 <!-- etc. -->
 </sequence>
 <!-- etc. -->
 </complexType>

 <complexType name="USAddress">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <!-- etc. -->
 </sequence>
 </complexType>

 <!-- etc. -->

Page 33 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

</schema>

To see how the target namespace of this schema is populated, we examine in turn
each of the type definitions and element declarations. Starting from the end of the
schema, we first define a type called USAddress that consists of the elements
name, street, etc. One consequence of this type definition is that the USAddress
type is included in the schema's target namespace. We next define a type called
PurchaseOrderType that consists of the elements shipTo, billTo, comment,
etc. PurchaseOrderType is also included in the schema's target namespace.
Notice that the type references in the three element declarations are prefixed, i.e.
po:USAddress, po:USAddress and po:comment, and the prefix is associated
with the namespace http://www.example.com/PO1. This is the same
namespace as the schema's target namespace, and so a processor of this schema
will know to look within this schema for the definition of the type USAddress and
the declaration of the element comment. It is also possible to refer to types in
another schema with a different target namespace, hence enabling re-use of
definitions and declarations between schemas.

At the beginning of the schema po1.xsd, we declare the elements
purchaseOrder and comment. They are included in the schema's target
namespace. The purchaseOrder element's type is prefixed, for the same reason
that USAddress is prefixed. In contrast, the comment element's type, string, is
not prefixed. The po1.xsd schema contains a default namespace declaration, and
so unprefixed types such as string and unprefixed elements such as element
and complexType are associated with the default namespace
http://www.w3.org/2001/XMLSchema. In fact, this is the target namespace of
XML Schema itself, and so a processor of po1.xsd will know to look within the
schema of XML Schema -- otherwise known as the "schema for schemas" -- for the
definition of the type string and the declaration of the element called element.

Let us now examine how the target namespace of the schema affects a conforming
instance document:

Example
A Purchase Order with Unqualified Locals, po1.xml
<?xml version="1.0"?>
<apo:purchaseOrder xmlns:apo="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <!-- etc. -->
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>

Page 34 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <street>8 Oak Avenue</street>
 <!-- etc. -->
 </billTo>
 <apo:comment>Hurry, my lawn is going wild<!/apo:comment>
 <!-- etc. -->
</apo:purchaseOrder>

The instance document declares one namespace,
http://www.example.com/PO1, and associates it with the prefix apo:. This
prefix is used to qualify two elements in the document, namely purchaseOrder
and comment. The namespace is the same as the target namespace of the schema
in po1.xsd, and so a processor of the instance document will know to look in that
schema for the declarations of purchaseOrder and comment. In fact, target
namespaces are so named because of the sense in which there exists a target
namespace for the elements purchaseOrder and comment. Target namespaces
in the schema therefore control the validation of corresponding namespaces in the
instance.

The prefix apo: is applied to the global elements purchaseOrder and comment
elements. Furthermore, elementFormDefault and attributeFormDefault
require that the prefix is not applied to any of the locally declared elements such as
shipTo, billTo, name and street, and it is not applied to any of the attributes
(which were all declared locally). The purchaseOrder and comment are global
elements because they are declared in the context of the schema as a whole rather
than within the context of a particular type. For example, the declaration of
purchaseOrder appears as a child of the schema element in po1.xsd, whereas
the declaration of shipTo appears as a child of the complexType element that
defines PurchaseOrderType.

When local elements and attributes are not required to be qualified, an instance
author may require more or less knowledge about the details of the schema to
create schema valid instance documents. More specifically, if the author can be
sure that only the root element (such as purchaseOrder) is global, then it is a
simple matter to qualify only the root element. Alternatively, the author may know
that all the elements are declared globally, and so all the elements in the instance
document can be prefixed, perhaps taking advantage of a default namespace
declaration. (We examine this approach in Global vs. Local Declarations (§3.3).) On
the other hand, if there is no uniform pattern of global and local declarations, the
author will need detailed knowledge of the schema to correctly prefix global
elements and attributes.

3.2 Qualified Locals

Elements and attributes can be independently required to be qualified, although we
start by describing the qualification of local elements. To specify that all locally
declared elements in a schema must be qualified, we set the value of

Page 35 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

elementFormDefault to qualified:

Example
Modifications to po1.xsd for Qualified Locals
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <element name="purchaseOrder" type="po:PurchaseOrderType"/>
 <element name="comment" type="string"/>

 <complexType name="PurchaseOrderType">
 <!-- etc. -->
 </complexType>

 <!-- etc. -->

</schema>

And in this conforming instance document, we qualify all the elements explicitly:

Example
A Purchase Order with Explicitly Qualified Locals
<?xml version="1.0"?>
<apo:purchaseOrder xmlns:apo="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <apo:shipTo country="US">
 <apo:name>Alice Smith</apo:name>
 <apo:street>123 Maple Street</apo:street>
 <!-- etc. -->
 </apo:shipTo>
 <apo:billTo country="US">
 <apo:name>Robert Smith</apo:name>
 <apo:street>8 Oak Avenue</apo:street>
 <!-- etc. -->
 </apo:billTo>
 <apo:comment>Hurry, my lawn is going wild<!/apo:comment>
 <!-- etc. -->
</apo:purchaseOrder>

Alternatively, we can replace the explicit qualification of every element with implicit
qualification provided by a default namespace, as shown here in po2.xml:

Example
A Purchase Order with Default Qualified Locals, po2.xml

Page 36 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

<?xml version="1.0"?>
<purchaseOrder xmlns="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <!-- etc. -->
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <!-- etc. -->
 </billTo>
 <comment>Hurry, my lawn is going wild<!/comment>
 <!-- etc. -->
</purchaseOrder>

In po2.xml, all the elements in the instance belong to the same namespace, and
the namespace statement declares a default namespace that applies to all the
elements in the instance. Hence, it is unnecessary to explicitly prefix any of the
elements. As another illustration of using qualified elements, the schemas in
Advanced Concepts III: The Quarterly Report (§5) all require qualified elements.

Qualification of attributes is very similar to the qualification of elements. Attributes
that must be qualified, either because they are declared globally or because the
attributeFormDefault attribute is set to qualified, appear prefixed in
instance documents. One example of a qualified attribute is the xsi:nil attribute
that was introduced in Nil Values (§2.9). In fact, attributes that are required to be
qualified must be explicitly prefixed because the Namespaces in XML specification
does not provide a mechanism for defaulting the namespaces of attributes.
Attributes that are not required to be qualified appear in instance documents without
prefixes, which is the typical case.

The qualification mechanism we have described so far has controlled all local
element and attribute declarations within a particular target namespace. It is also
possible to control qualification on a declaration by declaration basis using the
form attribute. For example, to require that the locally declared attribute
publicKey is qualified in instances, we declare it in the following way:

Example
Requiring Qualification of Single Attribute
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!-- etc. -->

Page 37 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <element name="secure">
 <complexType>
 <sequence>
 <!-- element declarations -->
 </sequence>
 <attribute name="publicKey" type="base64Binary" form="qualified"/>
 </complexType>
 </element>
</schema>

Notice that the value of the form attribute overrides the value of the
attributeFormDefault attribute for the publicKey attribute only. Also, the
form attribute can be applied to an element declaration in the same manner. An
instance document that conforms to the schema is:

Example
Instance with a Qualified Attribute
<?xml version="1.0"?>
<purchaseOrder xmlns="http://www.example.com/PO1"
 xmlns:po="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <!-- etc. -->
 <secure po:publicKey="GpM7">
 <!-- etc. -->
 </secure>
</purchaseOrder>

3.3 Global vs. Local Declarations

Another authoring style, applicable when all element names are unique within a
namespace, is to create schemas in which all elements are global. This is similar in
effect to the use of <!ELEMENT> in a DTD. In the example below, we have
modified the original po1.xsd such that all the elements are declared globally.
Notice that we have omitted the elementFormDefault and
attributeFormDefault attributes in this example to emphasize that their values
are irrelevant when there are only global element and attribute declarations.

Example
Modified version of po1.xsd using only global element declarations
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1">

 <element name="purchaseOrder" type="po:PurchaseOrderType"/>

 <element name="shipTo" type="po:USAddress"/>

Page 38 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <element name="billTo" type="po:USAddress"/>
 <element name="comment" type="string"/>

 <element name="name" type="string"/>
 <element name="street" type="string"/>

 <complexType name="PurchaseOrderType">
 <sequence>
 <element ref="po:shipTo"/>
 <element ref="po:billTo"/>
 <element ref="po:comment" minOccurs="0"/>
 <!-- etc. -->
 </sequence>
 </complexType>

 <complexType name="USAddress">
 <sequence>
 <element ref="po:name"/>
 <element ref="po:street"/>
 <!-- etc. -->
 </sequence>
 </complexType>

 <!-- etc. -->

</schema>

This "global" version of po1.xsd will validate the instance document po2.xml
which, as we described previously, is also schema valid against the "qualified"
version of po1.xsd. In other words, both schema approaches can validate the
same, namespace defaulted, document. Thus, in one respect the two schema
approaches are similar, although in another important respect the two schema
approaches are very different. Specifically, when all elements are declared globally,
it is not possible to take advantage of local names. For example, you can only
declare one global element called "title". However, you can locally declare one
element called "title" that has a string type, and is a subelement of "book". Within
the same schema (target namespace) you can declare a second element also
called "title" that is an enumeration of the values "Mr Mrs Ms".

3.4 Undeclared Target Namespaces

In Basic Concepts: The Purchase Order (§2) we explained the basics of XML
Schema using a schema that did not declare a target namespace and an instance
document that did not declare a namespace. So the question naturally arises: What
is the target namespace in these examples and how is it referenced?

In the purchase order schema, po.xsd, we did not declare a target namespace for
the schema, nor did we declare a prefix (like po: above) associated with the
schema's target namespace with which we could refer to types and elements
defined and declared within the schema. The consequence of not declaring a target

Page 39 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

namespace in a schema is that the definitions and declarations from that schema,
such as USAddress and purchaseOrder, are referenced without namespace
qualification. In other words there is no explicit namespace prefix applied to the
references nor is there any implicit namespace applied to the reference by default.
So for example, the purchaseOrder element is declared using the type
reference PurchaseOrderType. In contrast, all the XML Schema elements and
types used in po.xsd are explicitly qualified with the prefix xsd: that is
associated with the XML Schema namespace.

In cases where a schema is designed without a target namespace, it is strongly
recommended that all XML Schema elements and types are explicitly qualified
with a prefix such as xsd: that is associated with the XML Schema namespace
(as in po.xsd). The rationale for this recommendation is that if XML Schema
elements and types are associated with the XML Schema namespace by default,
i.e. without prefixes, then references to XML Schema types may not be
distinguishable from references to user-defined types.

Element declarations from a schema with no target namespace validate
unqualified elements in the instance document. That is, they validate elements for
which no namespace qualification is provided by either an explicit prefix or by
default (xmlns:). So, to validate a traditional XML 1.0 document which does not
use namespaces at all, you must provide a schema with no target namespace. Of
course, there are many XML 1.0 documents that do not use namespaces, so there
will be many schema documents written without target namespaces; you must be
sure to give to your processor a schema document that corresponds to the
vocabulary you wish to validate.

4 Advanced Concepts II: The International Purchase Order

The purchase order schema described in Basic Concepts: The Purchase Order
(§2) was contained in a single document, and most of the schema constructions--
such as element declarations and type definitions-- were constructed from scratch.
In reality, schema authors will want to compose schemas from constructions
located in multiple documents, and to create new types based on existing types. In
this section, we examine mechanisms that enable such compositions and
creations.

4.1 A Schema in Multiple Documents

As schemas become larger, it is often desirable to divide their content among
several schema documents for purposes such as ease of maintenance, access
control, and readability. For these reasons, we have taken the schema constructs
concerning addresses out of po.xsd, and put them in a new file called
address.xsd. The modified purchase order schema file is called ipo.xsd:

Page 40 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Example
The International Purchase Order Schema, ipo.xsd
<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">

 <annotation>
 <documentation xml:lang="en">
 International Purchase order schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <!-- include address constructs -->
 <include
 schemaLocation="http://www.example.com/schemas/address.xsd"/>

 <element name="purchaseOrder" type="ipo:PurchaseOrderType"/>

 <element name="comment" type="string"/>

 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="ipo:Address"/>
 <element name="billTo" type="ipo:Address"/>
 <element ref="ipo:comment" minOccurs="0"/>
 <element name="items" type="ipo:Items"/>
 </sequence>
 <attribute name="orderDate" type="date"/>
 </complexType>

 <complexType name="Items">
 <sequence>
 <element name="item" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="productName" type="string"/>
 <element name="quantity">
 <simpleType>
 <restriction base="positiveInteger">
 <maxExclusive value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="USPrice" type="decimal"/>
 <element ref="ipo:comment" minOccurs="0"/>
 <element name="shipDate" type="date" minOccurs="0"/>
 </sequence>
 <attribute name="partNum" type="ipo:SKU" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

Page 41 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <simpleType name="SKU">
 <restriction base="string">
 <pattern value="\d{3}-[A-Z]{2}"/>
 </restriction>
 </simpleType>

</schema>

The file containing the address constructs is:

Example
Addresses for International Purchase Order schema, address.xsd
<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">

 <annotation>
 <documentation xml:lang="en">
 Addresses for International Purchase order schema
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <complexType name="Address">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
 </complexType>

 <complexType name="USAddress">
 <complexContent>
 <extension base="ipo:Address">
 <sequence>
 <element name="state" type="ipo:USState"/>
 <element name="zip" type="positiveInteger"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="UKAddress">
 <complexContent>
 <extension base="ipo:Address">
 <sequence>
 <element name="postcode" type="ipo:UKPostcode"/>
 </sequence>
 <attribute name="exportCode" type="positiveInteger" fixed="1"/>
 </extension>
 </complexContent>
 </complexType>

Page 42 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <!-- other Address derivations for more countries -->

 <simpleType name="USState">
 <restriction base="string">
 <enumeration value="AK"/>
 <enumeration value="AL"/>
 <enumeration value="AR"/>
 <!-- and so on ... -->
 </restriction>
 </simpleType>

 <!-- simple type definition for UKPostcode -->

</schema>

The various purchase order and address constructions are now contained in two
schema files, ipo.xsd and address.xsd. To include these constructions as part
of the international purchase order schema, in other words to include them in the
international purchase order's namespace, ipo.xsd contains the include
element:

Example
<include schemaLocation="http://www.example.com/schemas/address.xsd"/>

The effect of this include element is to bring in the definitions and declarations
contained in address.xsd, and make them available as part of the international
purchase order schema target namespace. The one important caveat to using
include is that the target namespace of the included components must be the
same as the target namespace of the including schema, in this case
http://www.example.com/IPO. Bringing in definitions and declarations using
the include mechanism effectively adds these components to the existing target
namespace. In Redefining Types & Groups (§4.5), we describe a similar
mechanism that enables you to modify certain components when they are brought
in.

In our example, we have shown only one including document and one included
document. In practice it is possible to include more than one document using
multiple include elements, and documents can include documents that
themselves include other documents. However, nesting documents in this manner
is legal only if all the included parts of the schema are declared with the same
target namespace.

Instance documents that conform to schema whose definitions span multiple
schema documents need only reference the 'topmost' document and the common
namespace, and it is the responsibility of the processor to gather together all the

Page 43 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

definitions specified in the various included documents. In our example above, the
instance document ipo.xml (see Using Derived Types in Instance Documents
(§4.3)) references only the common target namespace,
http://www.example.com/IPO, and (by implication) the one schema file
http://www.example.com/schemas/ipo.xsd. The processor is responsible
for obtaining the schema file address.xsd.

In Importing Types (§5.4) we describe how schemas can be used to validate
content from more than one namespace.

4.2 Deriving Types by Extension

To create our address constructs, we start by creating a complex type called
Address in the usual way (see address.xsd). The Address type contains the
basic elements of an address: a name, a street and a city. (Such a definition will
not work for all countries, but it serves the purpose of our example.) From this
starting point we derive two new complex types that contain all the elements of the
original type plus additional elements that are specific to addresses in the US and
the UK. The technique we use here to derive new (complex) address types by
extending an existing type is the same technique we used in Complex Types from
Simple Types (§2.5.1), except that our base type here is a complex type whereas
our base type in the previous section was a simple type.

We define the two new complex types, USAddress and UKAddress, using the
complexType element. In addition, we indicate that the content models of the
new types are complex, i.e. contain elements, by using the complexContent
element, and we indicate that we are extending the base type Address by the
value of the base attribute on the extension element.

When a complex type is derived by extension, its effective content model is the
content model of the base type plus the content model specified in the type
derivation. Furthermore, the two content models are treated as two children of a
sequential group. In the case of UKAddress, the content model of UKAddress is
the content model of Address plus the declarations for a postcode element and
an exportCode attribute. This is like defining the UKAddress from scratch as
follows:

Example
Effective Content Model of UKAddress
<complexType name="UKAddress">
 <sequence>
 <!-- content model of Address -->
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>

Page 44 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <!-- appended element declaration -->
 <element name="postcode" type="ipo:UKPostcode"/>
 </sequence>

 <!-- appended attribute declaration -->
 <attribute name="exportCode" type="positiveInteger" fixed="1"/>
</complexType>

4.3 Using Derived Types in Instance Documents

In our example scenario, purchase orders are generated in response to customer
orders which may involve shipping and billing addresses in different countries. The
international purchase order, ipo.xml below, illustrates one such case where
goods are shipped to the UK and the bill is sent to a US address. Clearly it is better
if the schema for international purchase orders does not have to spell out every
possible combination of international addresses for billing and shipping, and even
more so if we can add new complex types of international address simply by
creating new derivations of Address.

XML Schema allows us to define the billTo and shipTo elements as Address
types (see ipo.xsd) but to use instances of international addresses in place of
instances of Address. In other words, an instance document whose content
conforms to the UKAddress type will be valid if that content appears within the
document at a location where an Address is expected (assuming the UKAddress
content itself is valid). To make this feature of XML Schema work, and to identify
exactly which derived type is intended, the derived type must be identified in the
instance document. The type is identified using the xsi:type attribute which is
part of the XML Schema instance namespace. In the example, ipo.xml, use of the
UKAddress and USAddress derived types is identified through the values
assigned to the xsi:type attributes.

Example
An International Purchase order, ipo.xml
<?xml version="1.0"?>
<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="1999-12-01">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>

Page 45 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>

 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays<!/ipo:comment>
 <shipDate>1999-12-05</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

In Controlling the Creation & Use of Derived Types (§4.8) we describe how to
prevent derived types from being used in this sort of substitution.

4.4 Deriving Complex Types by Restriction

In addition to deriving new complex types by extending content models, it is
possible to derive new types by restricting the content models of existing types.
Restriction of complex types is conceptually the same as restriction of simple types,
except that the restriction of complex types involves a type's declarations rather
than the acceptable range of a simple type's values. A complex type derived by
restriction is very similar to its base type, except that its declarations are more
limited than the corresponding declarations in the base type. In fact, the values
represented by the new type are a subset of the values represented by the base
type (as is the case with restriction of simple types). In other words, an application
prepared for the values of the base type would not be surprised by the values of the
restricted type.

For example, suppose we want to update our definition of a purchase order so that
it must contain a comment; the schema shown in ipo.xsd allows a
purchaseOrder element to appear without any child comment elements. To
create our new RestrictedPurchaseOrderType type, we define the new type in
the usual way, indicate that it is derived by restriction from the base type
PurchaseOrderType , and provide a new (more restrictive) value for the minimum
number of comment element occurrences. Notice that types derived by restriction
must repeat all the particle components (element declarations, model groups, and
wildcards) of the base type definition that are to be included in the derived type.
However, attribute declarations do not need to be repeated in the derived type
definition; in this example, RestrictedPurchaseOrderType will inherit the
orderDate attribute declaration from PurchaseOrderType.

Page 46 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Example
Deriving RestrictedPurchaseOrderType by Restriction from PurchaseOrderType
<complexType name="RestrictedPurchaseOrderType">
 <complexContent>
 <restriction base="ipo:PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="ipo:Address"/>
 <element name="billTo" type="ipo:Address"/>
 <element ref="ipo:comment" minOccurs="1"/>
 <element name="items" type="ipo:Items"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

This change narrows the allowable number of comment elements from a minimum
of 0 to a minimum of 1. Note that all RestrictedPurchaseOrderType type
elements will also be acceptable as PurchaseOrderType type elements.

To further illustrate restriction, Table 3 shows several examples of how element
and attribute declarations within type definitions may be restricted (the table shows
element syntax although the first three examples are equally valid attribute
restrictions).

Table 3. Restriction Examples
Base Restriction(s) Notes

default="1" setting a default value where none was
previously given

fixed="100" setting a fixed value where none was
previously given

type="string" specifying a type where none was previously
given

(minOccurs,
maxOccurs)

(minOccurs,
maxOccurs)

(0, 1) (0, 0)

exclusion of an optional component; this may
also be accomplished by omitting the
component's declaration from the restricted
type definition

(0, 1) (1, 1) making an optional component required

(0, unbounded)
(0, 0)
(0, 37)
(1, 37)

Page 47 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

4.5 Redefining Types & Groups

In A Schema in Multiple Documents (§4.1) we described how to include definitions
and declarations obtained from external schema files having the same target
namespace. The include mechanism enables you to use externally created
schema components "as-is", that is, without any modification. We have just
described how to derive new types by extension and by restriction, and the
redefine mechanism we describe here enables you to redefine simple and
complex types, groups, and attribute groups that are obtained from external
schema files. Like the include mechanism, redefine requires the external
components to be in the same target namespace as the redefining schema,
although external components from schemas that have no namespace can also be
redefined. In the latter cases, the redefined components become part of the
redefining schema's target namespace.

To illustrate the redefine mechanism, we use it instead of the include
mechanism in the International Purchase Order schema, ipo.xsd, and we use it
to modify the definition of the complex type Address contained in address.xsd:

Example
Using redefine in the International Purchase Order
<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">

 <!-- bring in address constructs -->
 <redefine
 schemaLocation="http://www.example.com/schemas/address.xsd">

 <!-- redefinition of Address -->
 <complexType name="Address">
 <complexContent>
 <extension base="ipo:Address">
 <sequence>

(1, 9)

(1, 8)
(2, 9)
(4, 7)
(3, 3)

(1, unbounded)
(1, 12)

(3, unbounded)
(6, 6)

(1, 1) (1, 1) cannot further restrict minOccurs or
maxOccurs

Page 48 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <element name="country" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 </redefine>

 <!-- etc. -->

</schema>

The redefine element acts very much like the include element as it includes all
the declarations and definitions from the address.xsd file. The complex type
definition of Address uses the familiar extension syntax to add a country element
to the definition of Address. However, note that the base type is also Address.
Outside of the redefine element, any such attempt to define a complex type with
the same name (and in the same namespace) as the base from which it is being
derived would cause an error. But in this case, there is no error, and the extended
definition of Address becomes the only definition of Address.

Now that Address has been redefined, the extension applies to all schema
components that make use of Address. For example, address.xsd contains
definitions of international address types that are derived from Address. These
derivations reflect the redefined Address type, as shown in the following snippet:

Example
Snippet of ipo.xml using Redefined Address

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <!-- country was added to Address which is base type of UKAddress -->
 <country>United Kingdom</country>
 <!-- postcode was added as part of UKAddress -->
 <postcode>CB1 1JR</postcode>
 </shipTo>

Our example has been carefully constructed so that the redefined Address type
does not conflict in any way with the types that are derived from the original
Address definition. But note that it would be very easy to create a conflict. For
example, if the international address type derivations had extended Address by
adding a country element, then the redefinition of Address would be adding an
element of the same name to the content model of Address. It is illegal to have two

Page 49 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

elements of the same name (and in the same target namespace) but different
types in a content model, and so the attempt to redefine Address would cause an
error. In general, redefine does not protect you from such errors, and it should
be used cautiously.

4.6 Substitution Groups

XML Schema provides a mechanism, called substitution groups, that allows
elements to be substituted for other elements. More specifically, elements can be
assigned to a special group of elements that are said to be substitutable for a
particular named element called the head element. (Note that the head element as
well as the substitutable elementsmust be declared as global elements.) To
illustrate, we declare two elements called customerComment and shipComment
and assign them to a substitution group whose head element is comment, and so
customerComment and shipComment can be used anyplace that we are able to
use comment. Elements in a substitution group must have the same type as the
head element, or they can have a type that has been derived from the head
element's type. To declare these two new elements, and to make them
substitutable for the comment element, we use the following syntax:

Example
Declaring Elements Substitutable for comment
<element name="shipComment" type="string"
 substitutionGroup="ipo:comment"/>
<element name="customerComment" type="string"
 substitutionGroup="ipo:comment"/>

When these declarations are added to the international purchase order schema,
shipComment and customerComment can be substituted for comment in the
instance document, for example:

Example
Snippet of ipo.xml with Substituted Elements
....
<items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:shipComment>
 Use gold wrap if possible
 </ipo:shipComment>
 <ipo:customerComment>
 Want this for the holidays!
 </ipo:customerComment>

Page 50 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <shipDate>1999-12-05</shipDate>
 </item>
</items>
....

Note that when an instance document contains element substitutions whose types
are derived from those of their head elements, it is not necessary to identify the
derived types using the xsi:type construction that we described in Using Derived
Types in Instance Documents (§4.3).

The existence of a substitution group does not require any of the elements in that
class to be used, nor does it preclude use of the head element. It simply provides a
mechanism for allowing elements to be used interchangeably.

4.7 Abstract Elements and Types

XML Schema provides a mechanism to force substitution for a particular element or
type. When an element or type is declared to be "abstract", it cannot be used in an
instance document. When an element is declared to be abstract, a member of that
element's substitution group must appear in the instance document. When an
element's corresponding type definition is declared as abstract, all instances of that
element must use xsi:type to indicate a derived type that is not abstract.

In the substitution group example we described in Substitution Groups (§4.6), it
would be useful to specifically disallow use of the comment element so that
instances must make use of the customerComment and shipComment elements.
To declare the comment element abstract, we modify its original declaration in the
international purchase order schema, ipo.xsd, as follows:

Example
<element name="comment" type="string" abstract="true"/>

With comment declared as abstract, instances of international purchase orders are
now only valid if they contain customerComment and shipComment elements.

Declaring an element as abstract requires the use of a substitution group. Declaring
a type as abstract simply requires the use of a type derived from it (and identified by
the xsi:type attribute) in the instance document. Consider the following schema
definition:

Example
Schema for Vehicles
<schema xmlns="http://www.w3.org/2001/XMLSchema"

Page 51 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 targetNamespace="http://cars.example.com/schema"
 xmlns:target="http://cars.example.com/schema">

 <complexType name="Vehicle" abstract="true"/>

 <complexType name="Car">
 <complexContent>
 <extension base="target:Vehicle"/>
 </complexContent>
 </complexType>

 <complexType name="Plane">
 <complexContent>
 <extension base="target:Vehicle"/>
 </complexContent>
 </complexType>

 <element name="transport" type="target:Vehicle"/>
</schema>

The transport element is not abstract, therefore it can appear in instance
documents. However, because its type definition is abstract, it may never appear in
an instance document without an xsi:type attribute that refers to a derived type.
That means the following is not schema-valid:

Example
<transport xmlns="http://cars.example.com/schema"/>

because the transport element's type is abstract. However, the following is
schema-valid:

Example
<transport xmlns="http://cars.example.com/schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Car"/>

because it uses a non-abstract type that is substitutable for Vehicle.

4.8 Controlling the Creation & Use of Derived Types

So far, we have been able to derive new types and use them in instance documents
without any restraints. In reality, schema authors will sometimes want to control
derivations of particular types, and the use of derived types in instances.

XML Schema provides a couple of mechanisms that control the derivation of types.

Page 52 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

One of these mechanisms allows the schema author to specify that for a particular
complex type, new types may not be derived from it, either (a) by restriction, (b) by
extension, or (c) at all. To illustrate, suppose we want to prevent any derivation of
the Address type by restriction because we intend for it only to be used as the
base for extended types such as USAddress and UKAddress. To prevent any
such derivations, we slightly modify the original definition of Address as follows:

Example
Preventing Derivations by Restriction of Address
<complexType name="Address" final="restriction">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
</complexType>

The restriction value of the final attribute prevents derivations by
restriction. Preventing derivations at all, or by extension, are indicated by the
values #all and extension respectively. Moreover, there exists an optional
finalDefault attribute on the schema element whose value can be one of the
values allowed for the final attribute. The effect of specifying the
finalDefault attribute is equivalent to specifying a final attribute on every
type definition and element declaration in the schema.

Another type-derivation mechanism controls which facets can be applied in the
derivation of a new simple type. When a simple type is defined, the fixed
attribute may be applied to any of its facets to prevent a derivation of that type
from modifying the value of the fixed facets. For example, we can define a
Postcode simple type as:

Example
Preventing Changes to Simple Type Facets
<simpleType name="Postcode">
 <restriction base="string">
 <length value="7" fixed="true"/>
 </restriction>
</simpleType>

Once this simple type has been defined, we can derive a new postal code type in
which we apply a facet not fixed in the base definition, for example:

Example

Page 53 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Legal Derivation from Postcode
<simpleType name="UKPostcode">
 <restriction base="ipo:Postcode">
 <pattern value="[A-Z]{2}\d\s\d[A-Z]{2}"/>
 </restriction>
</simpleType>

However, we cannot derive a new postal code in which we re-apply any facet that
was fixed in the base definition:

Example
Illegal Derivation from Postcode
<simpleType name="UKPostcode">
 <restriction base="ipo:Postcode">
 <pattern value="[A-Z]{2}\d\d[A-Z]{2}"/>
 <!-- illegal attempt to modify facet fixed in base type -->
 <length value="6" fixed="true"/>
 </restriction>
</simpleType>

In addition to the mechanisms that control type derivations, XML Schema provides
a mechanism that controls which derivations and substitution groups may be used
in instance documents. In Using Derived Types in Instance Documents (§4.3), we
described how the derived types, USAddress and UKAddress, could be used by
the shipTo and billTo elements in instance documents. These derived types can
replace the content model provided by the Address type because they are derived
from the Address type. However, replacement by derived types can be controlled
using the block attribute in a type definition. For example, if we want to block any
derivation-by-restriction from being used in place of Address (perhaps for the
same reason we defined Address with final="restriction"), we can modify
the original definition of Address as follows:

Example
Preventing Derivations by Restriction of Address in the Instance
<complexType name="Address" block="restriction">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
</complexType>

The restriction value on the block attribute prevents derivations-by-restriction

Page 54 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

from replacing Address in an instance. However, it would not prevent
UKAddress and USAddress from replacing Address because they were derived
by extension. Preventing replacement by derivations at all, or by derivations-by-
extension, are indicated by the values #all and extension respectively. As with
final, there exists an optional blockDefault attribute on the schema element
whose value can be one of the values allowed for the block attribute. The effect
of specifying the blockDefault attribute is equivalent to specifying a block
attribute on every type definition and element declaration in the schema.

5 Advanced Concepts III: The Quarterly Report

The home-products ordering and billing application can generate ad-hoc reports
that summarize how many of which types of products have been billed on a per
region basis. An example of such a report, one that covers the fourth quarter of
1999, is shown in 4Q99.xml.

Notice that in this section we use qualified elements in the schema, and default
namespaces where possible in the instances.

Example
Quarterly Report, 4Q99.xml
<purchaseReport
 xmlns="http://www.example.com/Report"
 period="P3M" periodEnding="1999-12-31">

 <regions>
 <zip code="95819">
 <part number="872-AA" quantity="1"/>
 <part number="926-AA" quantity="1"/>
 <part number="833-AA" quantity="1"/>
 <part number="455-BX" quantity="1"/>
 </zip>
 <zip code="63143">
 <part number="455-BX" quantity="4"/>
 </zip>
 </regions>

 <parts>
 <part number="872-AA">Lawnmower</part>
 <part number="926-AA">Baby Monitor</part>
 <part number="833-AA">Lapis Necklace</part>
 <part number="455-BX">Sturdy Shelves</part>
 </parts>

</purchaseReport>

The report lists, by number and quantity, the parts billed to various zip codes, and

Page 55 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

it provides a description of each part mentioned. In summarizing the billing data,
the intention of the report is clear and the data is unambiguous because a number
of constraints are in effect. For example, each zip code appears only once
(uniqueness constraint). Similarly, the description of every billed part appears only
once although parts may be billed to several zip codes (referential constraint), see
for example part number 455-BX. In the following sections, we'll see how to
specify these constraints using XML Schema.

Example
The Report Schema, report.xsd
<schema targetNamespace="http://www.example.com/Report"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:r="http://www.example.com/Report"
 xmlns:xipo="http://www.example.com/IPO"
 elementFormDefault="qualified">

 <!-- for SKU -->
 <import namespace="http://www.example.com/IPO"/>

 <annotation>
 <documentation xml:lang="en">
 Report schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType"/>

 <element name="parts" type="r:PartsType"/>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>

 <unique name="dummy1">
 <selector xpath="r:regions/r:zip"/>
 <field xpath="@code"/>
 </unique>

 <key name="pNumKey">
 <selector xpath="r:parts/r:part"/>
 <field xpath="@number"/>
 </key>

 <keyref name="dummy2" refer="r:pNumKey">
 <selector xpath="r:regions/r:zip/r:part"/>
 <field xpath="@number"/>
 </keyref>

Page 56 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 </element>

 <complexType name="RegionsType">
 <sequence>
 <element name="zip" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <restriction base="anyType">
 <attribute name="number" type="xipo:SKU"/>
 <attribute name="quantity" type="positiveInteger"/>
 </restriction>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="code" type="positiveInteger"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="PartsType">
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="number" type="xipo:SKU"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>

</schema>

5.1 Specifying Uniqueness

XML Schema enables us to indicate that any attribute or element value must be
unique within a certain scope. To indicate that one particular attribute or element
value is unique, we use the unique element first to "select" a set of elements, and
then to identify the attribute or element "field" relative to each selected element that
has to be unique within the scope of the set of selected elements. In the case of our
report schema, report.xsd, the selector element's xpath attribute contains an
XPath expression, r:regions/r:zip, that selects a list of all the zip elements in
a report instance. Likewise, the field element's xpath attribute contains a second
XPath expression, @code, that specifies that the code attribute values of those
elements must be unique. Note that the XPath expressions limit the scope of what

Page 57 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

must be unique. The report might contain another code attribute, but its value
does not have to be unique because it lies outside the scope defined by the XPath
expressions. Also note that the XPath expressions you can use in the xpath
attribute are limited to a subset of the full XPath language defined in XML Path
Language 1.0.

We can also indicate combinations of fields that must be unique. Going back to
our purchase order example, suppose we want each item to have a unique
combination of part number and product name. We could achieve such a
constraint by specifying that for each item element, the combined values of its
partNum attribute and its productName child must be unique.

To define combinations of values, we simply use multiple field elements to
identify all the values involved:

Example
A Unique Composed Value
<xsd:element name="items" type="Items">
 <xsd:unique name="partNumAndName">
 <xsd:selector xpath="item"/>
 <xsd:field xpath="@partNum"/>
 <xsd:field xpath="productName"/>
 </xsd:unique>
</xsd:element>

5.2 Defining Keys & their References

In the 1999 quarterly report, the description of every billed part appears only once.
We could enforce this constraint using unique, however, we also want to ensure
that every part-quantity element listed under a zip code has a corresponding part
description. We enforce the constraint using the key and keyref elements. The
report schema, report.xsd, shows that the key and keyref constructions are
applied using almost the same syntax as unique. The key element applies to the
number attribute value of part elements that are children of the parts element.
This declaration of number as a key means that its value must be unique and
cannot be set to nil (i.e. is not nillable), and the name that is associated with the
key, pNumKey, makes the key referenceable from elsewhere.

To ensure that the part-quantity elements have corresponding part descriptions,
we say that the number attribute (<field xpath="@number"/>) of those
elements (<selector xpath="r:regions/r:zip/r:part"/>) must
reference the pNumKey key. This declaration of number as a keyref does not
mean that its value must be unique, but it does mean there must exist a pNumKey
with the same value.

Page 58 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

As you may have figured out by analogy with unique, it is possible to define
combinations of key and keyref values. Using this mechanism, we could go
beyond simply requiring the product numbers to be equal, and define a
combination of values that must be equal. Such values may involve combinations
of multiple value types (string, integer, date, etc.), provided that the order
and type of the field element references is the same in both the key and
keyref definitions.

5.3 XML Schema Constraints vs. XML 1.0 ID Attributes

XML 1.0 provides a mechanism for ensuring uniqueness using the ID attribute and
its associated attributes IDREF and IDREFS. This mechanism is also provided in
XML Schema through the ID, IDREF, and IDREFS simple types which can be
used for declaring XML 1.0-style attributes. XML Schema also introduces new
mechanisms that are more flexible and powerful. For example, XML Schema's
mechanisms can be applied to any element and attribute content, regardless of its
type. In contrast, ID is a type of attribute and so it cannot be applied to attributes,
elements or their content. Furthermore, Schema enables you to specify the scope
within which uniqueness applies whereas the scope of an ID is fixed to be the
whole document. Finally, Schema enables you to create keys or a keyref from
combinations of element and attribute content whereas ID has no such facility.

5.4 Importing Types

The report schema, report.xsd, makes use of the simple type xipo:SKU that is
defined in another schema, and in another target namespace. Recall that we used
include so that the schema in ipo.xsd could make use of definitions and
declarations from address.xsd. We cannot use include here because it can
only pull in definitions and declarations from a schema whose target namespace is
the same as the including schema's target namespace. Hence, the include
element does not identify a namespace (although it does require a
schemaLocation). The import mechanism that we describe in this section is an
important mechanism that enables schema components from different target
namespaces to be used together, and hence enables the schema validation of
instance content defined across multiple namespaces.

To import the type SKU and use it in the report schema, we identify the namespace
in which SKU is defined, and associate that namespace with a prefix for use in the
report schema. Concretely, we use the import element to identify SKU's target
namespace, http://www.example.com/IPO, and we associate the
namespace with the prefix xipo using a standard namespace declaration. The
simple type SKU, defined in the namespace http://www.example.com/IPO,
may then be referenced as xipo:SKU in any of the report schema's definitions
and declarations.

Page 59 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

In our example, we imported one simple type from one external namespace, and
used it for declaring attributes. XML Schema in fact permits multiple schema
components to be imported, from multiple namespaces, and they can be referred
to in both definitions and declarations. For example in report.xsd we could
additionally reuse the comment element declared in ipo.xsd by referencing that
element in a declaration:

Example
<element ref="xipo:comment"/>

Note however, that we cannot reuse the shipTo element from ipo.xsd, and the
following is not legal because only global schema components can be imported:

Example
<element ref="xipo:shipTo"/>

In ipo.xsd, comment is declared as a global element, in other words it is
declared as an element of the schema. In contrast, shipTo is declared locally, in
other words it is an element declared inside a complex type definition, specifically
the PurchaseOrderType type.

Complex types can also be imported, and they can be used as the base types for
deriving new types. Only named complex types can be imported; local,
anonymously defined types cannot. Suppose we want to include in our reports the
name of an analyst, along with contact information. We can reuse the (globally
defined) complex type USAddress from address.xsd, and extend it to define a
new type called Analyst in the report schema by adding the new elements
phone and email:

Example
Defining Analyst by Extending USAddress
<complexType name="Analyst">
 <complexContent>
 <extension base="xipo:USAddress">
 <sequence>
 <element name="phone" type="string"/>
 <element name="email" type="string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Page 60 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Using this new type we declare an element called analyst as part of the
purchaseReport element declaration (declarations not shown) in the report
schema. Then, the following instance document would conform to the modified
report schema:

Example
Instance Document Conforming to Report Schema with Analyst Type
<r:purchaseReport
 xmlns:r="http://www.example.com/Report"
 period="P3M" periodEnding="1999-12-31">
 <!-- regions and parts elements omitted -->
 <r:analyst>
 <name>Wendy Uhro</name>
 <street>10 Corporate Towers</street>
 <city>San Jose</city>
 <state>CA</state>
 <zip>95113</zip>
 <r:phone>408-271-3366</r:phone>
 <r:email>uhro@example.com</r:email>
 </r:analyst>
</r:purchaseReport>

Note that the report now has both qualified and unqualified elements. This is
because some of the elements (name, street, city, state and zip) are locally
declared in ipo.xsd, whose elementFormDefault is unqualified (by
default). The other elements in the example are declared in report.xsd, whose
elementFormDefault is set to qualified.

When schema components are imported from multiple namespaces, each
namespace must be identified with a separate import element. The import
elements themselves must appear as the first children of the schema element.
Furthermore, each namespace must be associated with a prefix, using a standard
namespace declaration, and that prefix is used to qualify references to any
schema components belonging to that namespace. Finally, import elements
optionally contain a schemaLocation attribute to help locate resources
associated with the namespaces. We discuss the schemaLocation attribute in
more detail in a later section.

5.4.1 Type Libraries

As XML schemas become more widespread, schema authors will want to create
simple and complex types that can be shared and used as building blocks for
creating new schemas. XML Schemas already provides types that play this role, in
particular, the types described in the Simple Types appendix and in an
introductory type library.

Page 61 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Schema authors will undoubtedly want to create their own libraries of types to
represent currency, units of measurement, business addresses, and so on. Each
library might consist of a schema containing one or more definitions, for example,
a schema containing a currency type:

Example
Example Currency Type in Type Library
<schema targetNamespace="http://www.example.com/Currency"
 xmlns:c="http://www.example.com/Currency"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <annotation>
 <documentation xml:lang="en">
 Definition of Currency type based on ISO 4217
 </documentation>
 </annotation>

 <complexType name="Currency">
 <simpleContent>
 <extension base="decimal">
 <attribute name="name">
 <simpleType>
 <restriction base="string">

 <enumeration value="AED">
 <annotation>
 <documentation xml:lang="en">
 United Arab Emirates: Dirham (1 Dirham = 100 Fils)
 </documentation>
 </annotation>
 </enumeration>

 <enumeration value="AFA">
 <annotation>
 <documentation xml:lang="en">
 Afghanistan: Afghani (1 Afghani = 100 Puls)
 </documentation>
 </annotation>
 </enumeration>

 <enumeration value="ALL">
 <annotation>
 <documentation xml:lang="en">
 Albania, Lek (1 Lek = 100 Qindarka)
 </documentation>
 </annotation>
 </enumeration>

 <!-- and other currencies -->

 </restriction>
 </simpleType>
 </attribute>

Page 62 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 </extension>
 </simpleContent>
 </complexType>

</schema>

An example of an element appearing in an instance and having this type:

Example
<convertFrom name="AFA">199.37</convertFrom>

Once we have defined the currency type, we can make it available for re-use in
other schemas through the import mechanism just described.

5.5 Any Element, Any Attribute

In previous sections we have seen several mechanisms for extending the content
models of complex types. For example, a mixed content model can contain arbitrary
character data in addition to elements, and for example, a content model can
contain elements whose types are imported from external namespaces. However,
these mechanisms provide very broad and very narrow controls respectively. The
purpose of this section is to describe a flexible mechanism that enables content
models to be extended by any elements and attributes belonging to specified
namespaces.

To illustrate, consider a version of the quarterly report, 4Q99html.xml, in which
we have embedded an XHTML representation of the XML parts data. The XHTML
content appears as the content of the element htmlExample, and the default
namespace is changed on the outermost XHTML element (table) so that all the
XHTML elements belong to the XHTML namespace,
http://www.w3.org/1999/xhtml:

Example
Quarterly Report with XHTML, 4Q99html.xml
<purchaseReport
 xmlns="http://www.example.com/Report"
 period="P3M" periodEnding="1999-12-31">

 <regions>
 <!-- part sales listed by zip code, data from 4Q99.xml -->
 </regions>

 <parts>
 <!-- part descriptions from 4Q99.xml -->
 </parts>

Page 63 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

 <htmlExample>
 <table xmlns="http://www.w3.org/1999/xhtml"
 border="0" width="100%">
 <tr>
 <th align="left">Zip Code</th>
 <th align="left">Part Number</th>
 <th align="left">Quantity</th>
 </tr>
 <tr><td>95819</td><td> </td><td> </td></tr>
 <tr><td> </td><td>872-AA</td><td>1</td></tr>
 <tr><td> </td><td>926-AA</td><td>1</td></tr>
 <tr><td> </td><td>833-AA</td><td>1</td></tr>
 <tr><td> </td><td>455-BX</td><td>1</td></tr>
 <tr><td>63143</td><td> </td><td> </td></tr>
 <tr><td> </td><td>455-BX</td><td>4</td></tr>
 </table>
 </htmlExample>

</purchaseReport>

To permit the appearance of XHTML in the instance document we modify the report
schema by declaring a new element htmlExample whose content is defined by
the any element. In general, an any element specifies that any well-formed XML is
permissible in a type's content model. In the example, we require the XML to belong
to the namespace http://www.w3.org/1999/xhtml, in other words, it should
be XHTML. The example also requires there to be at least one element present
from this namespace, as indicated by the values of minOccurs and maxOccurs:

Example
Modification to purchaseReport Declaration to Allow XHTML in Instance
<element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType"/>
 <element name="parts" type="r:PartsType"/>
 <element name="htmlExample">
 <complexType>
 <sequence>
 <any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="1" maxOccurs="unbounded"
 processContents="skip"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>
</element>

Page 64 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

The modification permits some well-formed XML belonging to the namespace
http://www.w3.org/1999/xhtml to appear inside the htmlExample
element. Therefore 4Q99html.xml is permissible because there is one element
which (with its children) is well-formed, the element appears inside the appropriate
element (htmlExample), and the instance document asserts that the element and
its content belongs to the required namespace. However, the XHTML may not
actually be valid because nothing in 4Q99html.xml by itself can provide that
guarantee. If such a guarantee is required, the value of the processContents
attribute should be set to strict (the default value). In this case, an XML
processor is obliged to obtain the schema associated with the required
namespace, and validate the XHTML appearing within the htmlExample
element.

In another example, we define a text type which is similar to the text type defined
in XML Schema's introductory type library (see also Type Libraries (§5.4.1)), and
is suitable for internationalized human-readable text. The text type allows an
unrestricted mixture of character content and element content from any
namespace, for example Ruby annotations, along with an optional xml:lang
attribute. The lax value of the processContents attribute instructs an XML
processor to validate the element content on a can-do basis: It will validate
elements and attributes for which it can obtain schema information, but it will not
signal errors for those it cannot obtain any schema information.

Example
Text Type
<xsd:complexType name="text">
 <xsd:complexContent mixed="true">
 <xsd:restriction base="xsd:anyType">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded
 </xsd:sequence>
 <xsd:attribute ref="xml:lang"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

Namespaces may be used to permit and forbid element content in various ways
depending upon the value of the namespace attribute, as shown in Table 4:

Table 4. Namespace Attribute in Any
Value of Namespace Attribute Allowable Element Content

##any Any well-formed XML from any namespace
(default)

Any well-formed XML that is not qualified, i.e.

Page 65 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

In addition to the any element which enables element content according to
namespaces, there is a corresponding anyAttribute element which enables
attributes to appear in elements. For example, we can permit any XHTML attribute
to appear as part of the htmlExample element by adding anyAttribute to its
declaration:

Example
Modification to htmlExample Declaration to Allow XHTML Attributes
<element name="htmlExample">
 <complexType>
 <sequence>
 <any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="1" maxOccurs="unbounded"
 processContents="skip"/>
 </sequence>
 <anyAttribute namespace="http://www.w3.org/1999/xhtml"/>
 </complexType>
</element>

This declaration permits an XHTML attribute, say href, to appear in the
htmlExample element. For example:

Example
An XHTML attribute in the htmlExample Element
....
 <htmlExample xmlns:h="http://www.w3.org/1999/xhtml"
 h:href="http://www.example.com/reports/4Q99.html">
 <!-- XHTML markup here -->
 </htmlExample>
....

The namespace attribute in an anyAttribute element can be set to any of the
values listed in Table 4 for the any element, and anyAttribute can be specified

##local not declared to be in a namespace

##other

Any well-formed XML that is from a
namespace other than the target namespace
of the type being defined (unqualified
elements are not allowed)

"http://www.w3.org/1999/xhtml
##targetNamespace"

Any well-formed XML belonging to any
namespace in the (whitespace separated) list;
##targetNamespace is shorthand for the
target namespace of the type being defined

Page 66 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

with a processContents attribute. In contrast to an any element,
anyAttribute cannot constrain the number of attributes that may appear in an
element.

5.6 schemaLocation

XML Schema uses the schemaLocation and xsi:schemaLocation attributes
in three circumstances.

1. In an instance document, the attribute xsi:schemaLocation provides hints
from the author to a processor regarding the location of schema documents. The
author warrants that these schema documents are relevant to checking the validity
of the document content, on a namespace by namespace basis. For example, we
can indicate the location of the Report schema to a processor of the Quarterly
Report:

Example
Using schemaLocation in the Quarterly Report, 4Q99html.xml
<purchaseReport
 xmlns="http://www.example.com/Report"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/Report
 http://www.example.com/Report.xsd"
 period="P3M" periodEnding="1999-12-31">

 <!-- etc. -->

</purchaseReport>

The schemaLocation attribute value consists of one or more pairs of URI
references, separated by white space. The first member of each pair is a
namespace name, and the second member of the pair is a hint describing where
to find an appropriate schema document for that namespace. The presence of
these hints does not require the processor to obtain or use the cited schema
documents, and the processor is free to use other schemas obtained by any
suitable means, or to use no schema at all.

A schema is not required to have a namespace (see Undeclared Target
Namespaces (§3.4)) and so there is a noNamespaceSchemaLocation attribute
which is used to provide hints for the locations of schema documents that do not
have target namespaces.

2. In a schema, the include element has a required schemaLocation attribute,
and it contains a URI reference which must identify a schema document. The
effect is to compose a final effective schema by merging the declarations and

Page 67 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

definitions of the including and the included schemas. For example, in Advanced
Concepts II: The International Purchase Order (§4), the type definitions of
Address, USAddress, UKAddress, USState (along with their attribute and local
element declarations) from address.xsd were added to the element declarations
of purchaseOrder and comment, and the type definitions of
PurchaseOrderType, Items and SKU (along with their attribute and local
element declarations) from ipo.xsd to create a single schema.

3. Also in a schema, the import element has optional namespace and
schemaLocation attributes. If present, the schemaLocation attribute is
understood in a way which parallels the interpretation of xsi:schemaLocation
in (1). Specifically, it provides a hint from the author to a processor regarding the
location of a schema document that the author warrants supplies the required
components for the namespace identified by the namespace attribute. To import
components that are not in any target namespace, the import element is used
without a namespace attribute (and with or without a schemaLocation attribute).
References to components imported in this manner are unqualified.

Note that the schemaLocation is only a hint and some processors and
applications will have reasons to not use it. For example, an XHTML editor may
have a built-in XHTML schema.

5.7 Conformance

An instance document may be processed against a schema to verify whether the
rules specified in the schema are honored in the instance. Typically, such
processing actually does two things, (1) it checks for conformance to the rules, a
process called schema validation, and (2) it adds supplementary information that
is not immediately present in the instance, such as types and default values, called
infoset contributions.

The author of an instance document, such as a particular purchase order, may
claim, in the instance itself, that it conforms to the rules in a particular schema.
The author does this using the schemaLocation attribute discussed above. But
regardless of whether a schemaLocation attribute is present, an application is
free to process the document against any schema. For example, a purchasing
application may have the policy of always using a certain purchase order schema,
regardless of any schemaLocation values.

Conformance checking can be thought of as proceeding in steps, first checking
that the root element of the document instance has the right contents, then
checking that each subelement conforms to its description in a schema, and so on
until the entire document is verified. Processors are required to report what
checking has been carried out.

Page 68 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

To check an element for conformance, the processor first locates the declaration
for the element in a schema, and then checks that the targetNamespace
attribute in the schema matches the actual namespace URI of the element.
Alternatively, it may determine that the schema does not have a
targetNamespace attribute and the instance element is not namespace-
qualified.

Supposing the namespaces match, the processor then examines the type of the
element, either as given by the declaration in the schema, or by an xsi:type
attribute in the instance. If the latter, the instance type must be an allowed
substitution for the type given in the schema; what is allowed is controlled by the
block attribute in the element declaration. At this same time, default values and
other infoset contributions are applied.

Next the processor checks the immediate attributes and contents of the element,
comparing these against the attributes and contents permitted by the element's
type. For example, considering a shipTo element such as the one in The
Purchase Order Schema (§2.1), the processor checks what is permitted for an
Address, because that is the shipTo element's type.

If the element has a simple type, the processor verifies that the element has no
attributes or contained elements, and that its character content matches the rules
for the simple type. This sometimes involves checking the character sequence
against regular expressions or enumerations, and sometimes it involves checking
that the character sequence represents a value in a permitted range.

If the element has a complex type, then the processor checks that any required
attributes are present and that their values conform to the requirements of their
simple types. It also checks that all required subelements are present, and that the
sequence of subelements (and any mixed text) matches the content model
declared for the complex type. Regarding subelements, schemas can either
require exact name matching, permit substitution by an equivalent element or
permit substitution by any element allowed by an 'any' particle.

Unless a schema indicates otherwise (as it can for 'any' particles) conformance
checking then proceeds one level more deeply by looking at each subelement in
turn, repeating the process described above.

A Acknowledgements

Many people have contributed ideas, material and feedback that has improved this
document. In particular, the editor acknowledges contributions from David Beech,
Paul Biron, Don Box, Allen Brown, David Cleary, Dan Connolly, Roger Costello,
Martin Dürst, Martin Gudgin, Dave Hollander, Joe Kesselman, John McCarthy,
Andrew Layman, Eve Maler, Ashok Malhotra, Noah Mendelsohn, Michael
Sperberg-McQueen, Henry Thompson, Misha Wolf, and Priscilla Walmsley for

Page 69 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

validating the examples.

At the time the first edition of this specification was published, the members of the
XML Schema Working Group were:

Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Charles E. Campbell, Informix
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU
David Cleary, Progress Software
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox
Roger L. Costello, MITRE
Haavard Danielson, Progress Software
Josef Dietl, Mozquito Technologies
David Ezell, Hewlett-Packard Company
Alexander Falk, Altova GmbH
David Fallside, IBM
Dan Fox, Defense Logistics Information Service (DLIS)
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Dave Hollander, Contivo, Inc (co-chair)
Mary Holstege, Invited Expert
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Rick Jelliffe, Academia Sinica
Simon Johnston, Rational Software
Bob Lojek, Mozquito Technologies
Ashok Malhotra, Microsoft
Lisa Martin, IBM
Noah Mendelsohn, Lotus Development Corporation
Adrian Michel, Commerce One
Alex Milowski, Invited Expert
Don Mullen, TIBCO Extensibility
Dave Peterson, Graphic Communications Association
Jonathan Robie, Software AG
Eric Sedlar, Oracle Corp.
C. M. Sperberg-McQueen, W3C (co-chair)
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Henry S. Thompson, University of Edinburgh
Mark Tucker, Health Level Seven

Page 70 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Aki Yoshida, SAP AG
Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation
and contributions of a number of people not currently members of the Working
Group, including in particular those named below. Affiliations given are those
current at the time of their work with the WG.

Paula Angerstein, Vignette Corporation
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation
Mike Cokus, MITRE
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
George Feinberg, Object Design
Charles Frankston, Microsoft
Ernesto Guerrieri, Inso
Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft
Dmitry Lenkov, Hewlett-Packard Company
John McCarthy, Lawrence Berkeley National Laboratory
Murata Makoto, Xerox
Eve Maler, Sun Microsystems
Murray Maloney, Muzmo Communication, acting for Commerce One
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
John C. Schneider, MITRE
Lew Shannon, NCR
William Shea, Merrill Lynch
Ralph Swick, W3C
Tony Stewart, Rivcom
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar

Page 71 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

The lists given above pertain to the first edition. At the time work on this second
edition was completed, the membership of the Working Group was:

Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Allen Brown, Microsoft
Charles E. Campbell, Invited expert
Peter Chen, Invited expert
Tony Cincotta, NIST
David Ezell, National Association of Convenience Stores
Matthew Fuchs, Invited expert
Sandy Gao, IBM
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, Invited expert
Mary Holstege, Mark Logic
Mario Jeckle, DaimlerChrysler
Marcel Jemio, Data Interchange Standards Association
Kohsuke Kawaguchi, Sun Microsystems
Ashok Malhotra, Invited expert
Lisa Martin, IBM
Jim Melton, Oracle Corp
Noah Mendelsohn, IBM
Dave Peterson, Invited expert
Anli Shundi, TIBCO Extensibility
C. M. Sperberg-McQueen, W3C (co-chair)
Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Henry S. Thompson, University of Edinburgh
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, Invited expert
Kongyi Zhou, Oracle Corp.

We note with sadness the accidental death of Mario Jeckle shortly after the
completion of work on this document. In addition to those named above, several
people served on the Working Group during the development of this second
edition:

Oriol Carbo, University of Edinburgh
Tyng-Ruey Chuang, Academia Sinica
Joey Coyle, Health Level 7
Tim Ewald, DevelopMentor
Nelson Hung, Corel
Melanie Kudela, Uniform Code Council
Matthew MacKenzie, XML Global
Cliff Schmidt, Microsoft
John Stanton, Defense Information Systems Agency
John Tebbutt, NIST

Page 72 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

Ross Thompson, Contivo
Scott Vorthmann, TIBCO Extensibility

B Simple Types & their Facets

The legal values for each simple type can be constrained through the application
of one or more facets. Tables B1.a and B1.b list all of XML Schema's built-in
simple types and the facets applicable to each type. The names of the simple
types and the facets are linked from the tables to the corresponding descriptions in
XML Schema Part 2: Datatypes.

Table B1.a. Simple Types & Applicable Facets
Simple Types Facets

length minLength maxLength pattern enumeration whiteSp
string y y y y y y
normalizedString y y y y y y
token y y y y y see (
base64Binary y y y y y see (
hexBinary y y y y y see (
integer y y see (
positiveInteger y y see (
negativeInteger y y see (
nonNegativeInteger y y see (
nonPositiveInteger y y see (
long y y see (
unsignedLong y y see (
int y y see (
unsignedInt y y see (
short y y see (
unsignedShort y y see (
byte y y see (
unsignedByte y y see (
decimal y y see (
float y y see (
double y y see (
boolean y see (
duration y y see (

Page 73 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

The facets listed in Table B1.b apply only to simple types which are ordered. Not
all simple types are ordered and so B1.b does not list all of the simple types.

dateTime y y see (
date y y see (
time y y see (
gYear y y see (
gYearMonth y y see (
gMonth y y see (
gMonthDay y y see (
gDay y y see (
Name y y y y y see (
QName y y y y y see (
NCName y y y y y see (
anyURI y y y y y see (
language y y y y y see (
ID y y y y y see (
IDREF y y y y y see (
IDREFS y y y y y see (
ENTITY y y y y y see (
ENTITIES y y y y y see (
NOTATION y y y y y see (
NMTOKEN y y y y y see (
NMTOKENS y y y y y see (
Note: (1) Although the whiteSpace facet is applicable to this type, the only value th
can be specified is collapse.

Table B1.b. Simple Types & Applicable Facets
Simple Types Facets

max
Inclusive

max
Exclusive

min
Inclusive

min
Exclusive

total
Digits

fraction
Digits

integer y y y y y see (1)
positiveInteger y y y y y see (1)
negativeInteger y y y y y see (1)
nonNegativeInteger y y y y y see (1)

Page 74 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

C Using Entities

XML 1.0 provides various types of entities which are named fragments of content
that can be used in the construction of both DTD's (parameter entities) and
instance documents. In Building Content Models (§2.7), we noted how named
groups mimic parameter entities. In this section we show how entities can be
declared in instance documents, and how the functional equivalents of entities can
be declared in schemas.

Suppose we want to declare and use an entity in an instance document, and that
document is also constrained by a schema. For example:

Example
Declaring and referencing an entity in an instance document.

nonPositiveInteger y y y y y see (1)
long y y y y y see (1)
unsignedLong y y y y y see (1)
int y y y y y see (1)
unsignedInt y y y y y see (1)
short y y y y y see (1)
unsignedShort y y y y y see (1)
byte y y y y y see (1)
unsignedByte y y y y y see (1)
decimal y y y y y y
float y y y y
double y y y y
duration y y y y
dateTime y y y y
date y y y y
time y y y y
gYear y y y y
gYearMonth y y y y
gMonth y y y y
gMonthDay y y y y
gDay y y y y
Note: (1) Although the fractionDigits facet is applicable to this type, the only
value that can be specified is zero.

Page 75 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

<?xml version="1.0" ?>
<!DOCTYPE purchaseOrder [
<!ENTITY eacute "é">
]>
<purchaseOrder xmlns="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <!-- etc. -->
 <city>Montréal</city>
 <!-- etc. -->
</purchaseOrder>

Here, we declare an entity called eacute as part of an internal (DTD) subset, and
we reference this entity in the content of the city element. Note that when this
instance document is processed, the entity will be resolved before schema
validation takes place. In other words, a schema processor will determine the
validity of the city element using Montréal as the element's value.

We can achieve a similar but not identical outcome by declaring an element in a
schema, and by setting the element's content appropriately:

Example
<xsd:element name="eacute" type="xsd:token" fixed="é"/>

And this element can be used in an instance document:

Example
Using an element instead of an entity in an instance document.
<?xml version="1.0" ?>
<purchaseOrder xmlns="http://www.example.com/PO1"
 xmlns:c="http://www.example.com/characterElements"
 orderDate="1999-10-20">
 <!-- etc. -->
 <city>Montr<c:eacute/>al</city>
 <!-- etc. -->
</purchaseOrder>

In this case, a schema processor will process two elements, a city element, and
an eacute element for the contents of which the processor will supply the single
character é. Note that the extra element will complicate string matching; the two
forms of the name "Montréal" given in the two examples above will not match each
other using normal string-comparison techniques.

D Regular Expressions

Page 76 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

XML Schema's pattern facet uses a regular expression language that supports
Unicode. It is fully described in XML Schema Part 2. The language is similar to the
regular expression language used in the Perl Programming language, although
expressions are matched against entire lexical representations rather than user-
scoped lexical representations such as line and paragraph. For this reason, the
expression language does not contain the metacharacters ^ and $, although ^ is
used to express exception, e.g. [^0-9]x.

Table D1. Examples of Regular Expressions
Expression Match(es)
Chapter \d Chapter 0, Chapter 1, Chapter 2

Chapter\s\d Chapter followed by a single whitespace character (space, tab,
newline, etc.), followed by a single digit

Chapter\s\w
Chapter followed by a single whitespace character (space, tab,
newline, etc.), followed by a word character (XML 1.0 Letter or
Digit)

Española Española

\p{Lu} any uppercase character, the value of \p{} (e.g. "Lu") is defined
by Unicode

\p{IsGreek} any Greek character, the 'Is' construction may be applied to any
block name (e.g. "Greek") as defined by Unicode

\P{IsGreek} any non-Greek character, the 'Is' construction may be applied to
any block name (e.g. "Greek") as defined by Unicode

a*x x, ax, aax, aaax
a?x ax, x
a+x ax, aax, aaax

(a|b)+x ax, bx, aax, abx, bax, bbx, aaax, aabx, abax, abbx, baax, babx,
bbax, bbbx, aaaax

[abcde]x ax, bx, cx, dx, ex
[a-e]x ax, bx, cx, dx, ex
[\-ae]x -x, ax, ex
[ae\-]x ax, ex, -x
[^0-9]x any non-digit character followed by the character x
\Dx any non-digit character followed by the character x
.x any character followed by the character x
.*abc.* 1x2abc, abc1x2, z3456abchooray
ab{2}x abbx
ab{2,4}x abbx, abbbx, abbbbx

Page 77 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

E Index

E.1 XML Schema Elements

Each element name is followed by one or more links to examples (identified by
section number) in the Primer , plus a link to a formal XML description in either the
Structures or Datatypes parts of the XML Schema specification.

ab{2,}x abbx, abbbx, abbbbx
(ab){2}x ababx

all: [(§2.7)] [Structures]

annotation: [(§2.6)] [Structures]

any: [(§5.5)] [Structures]

anyAttribute: [(§5.5)] [Structures]

appinfo: [(§2.6)] [Structures]

attribute: [(§2.2)] [Structures]

attributeGroup: [(§2.8)] [Structures]

choice: [(§2.7)] [Structures]

complexContent: [(§2.5.3)] [Structures]

complexType: [(§2.2)] [Structures]

documentation: [(§2.6)] [Structures]

element: [(§2.2)] [Structures]

enumeration: [(§2.3)] [Datatypes]

extension: [(§2.5.1)] [Structures], [(§4.2)] [Structures]

field: [(§5.1)] [Structures]

group: [(§2.7)] [Structures]

import: [(§5.4)] [Structures]

include: [(§4.1)] [Structures]

key: [(§5.2)] [Structures]

keyref: [(§5.2)] [Structures]

length: [(§2.3.1)] [Datatypes]

Page 78 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

E.2 XML Schema Attributes

Each attribute name is followed by one or more pairs of references. Each pair of
references consists of a link to an example in the Primer, plus a link to a formal
XML description in either the Structures or Datatypes parts of the XML Schema
specification.

list: [(§2.3.1)] [Datatypes]

maxInclusive: [(§2.3)] [Datatypes]

maxLength: [(§2.3.1)] [Datatypes]

minInclusive: [(§2.3)] [Datatypes]

minLength: [(§2.3.1)] [Datatypes]

pattern: [(§2.3)] [Datatypes]

redefine: [(§4.5)] [Structures]

restriction: [(§2.3)] [Datatypes], [(§4.4)] [Structures]

schema: [(§2.1)] [Structures]

selector: [(§5.1)] [Structures]

sequence: [(§2.7)] [Structures]

simpleContent: [(§2.5.1)] [Structures]

simpleType: [(§2.3)] [Datatypes]

union: [(§2.3.2)] [Datatypes]

unique: [(§5.1)] [Structures]

abstract: element declaration [Structures]

abstract: complex type definition [Structures]

attributeFormDefault: schema definition [Structures]

base: simple type definition [Datatypes]

base: complex type definition [Structures]

block: complex type definition [Structures]

blockDefault: schema definition [Structures]

default: attribute declaration [Structures]

default: element declaration [Structures]

Page 79 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

elementFormDefault: schema definition [Structures]

final: complex type definition [Structures]

finalDefault: schema definition [Structures]

fixed: attribute declaration [Structures]

fixed: element declaration [Structures]

fixed: simple type definition [Datatypes]

form: attribute declaration [Structures]

form: element declaration [Structures]

itemType: list type definition [Datatypes]

memberTypes: union type definition [Datatypes]

maxOccurs: element declaration [Structures]

minOccurs: element declaration [Structures]

mixed: complex type definition [Structures]

name: element declaration [Structures]

name: attribute declaration [Structures]

name: complex type definition [Structures]

name: simple type definition [Datatypes]

namespace: element wildcard [Structures]

namespace: import specification [Structures]

xsi:noNamespaceSchemaLocation: instance element [Structures]

xsi:nil: instance element [Structures]

nillable: element declaration [Structures]

processContents: element wildcard [Structures]

processContents: attribute wildcard [Structures]

ref: element declaration [Structures]

schemaLocation: include specification [Structures]

schemaLocation: redefine specification [Structures]

schemaLocation: import specification [Structures]

xsi:schemaLocation: instance element [Structures]

Page 80 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

XML Schema's simple types are described in Table 2.

substitutionGroup: element declaration [Structures]

targetNamespace: schema definition [Structures]

type: element declaration [Structures]

type: attribute declaration [Structures]

xsi:type: instance element [Structures]

use: attribute declaration [Structures]

xpath: identity constraint definition [Structures]

Page 81 of 81XML Schema Part 0: Primer Second Edition

9/12/2008http://www.w3.org/TR/xmlschema-0/

