
KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

61

KASU JOURNAL OF MATHEMATICAL SCIENCES

A Comparison of NoSQL and Relational Database Management

Systems (RDBMS)

1Musa Garba and 2HassanAbubakar

1Computer Science Department, Kaduna State University
2Mathematics Department, UDU Sokoto,

1musa.garba@kasu.edu.ng, 2hassan.abubakar@udusok.edu.ng

Abstract

Relational databases (RDBMS) have led the database market since its development by Edgar Codd in 1970

(Shuxin & Indrakshi, 2005). A more recent model that has appeared in the database market is known as

NoSQL and it is quickly gaining ground. The new entrant is a non-relational data store which is being

deployed massively in the scaled website settings where relational database features are less needed and

better-quality performance in the area of data retrieval matters. NoSQL also known as non-relational

databases compliments relational databases and are now used by the world's largest organizations such as

Facebook, Amazon, and Google. Both models are good in specific areas and for specific applications.

Depending on what issues are to be solved by the company, it will determine the choice of a database model

to be adopted. Some organizations, however, prefer to make use of a hybrid database which is the

combination of both NoSQL and relational databases otherwise referred to as multi-model database. The

essence of this paper is to bring to the fore the importance of this relatively new technology and clearly

show its architecture. NOSQL security features will be compared with the better-known relational

databases for better understanding. This review will enable ease of choice for those who have the need for

such databases or facilitate the choice to embrace the trending practice of combining the two in the same

application to form a hybrid database.

Keywords: Databases, NOSQL, Relational Database, Integration, Scalability

1. Introduction
Big companies such as Facebook, Amazon, and Google discovered that relational database

technology has serious limitations in the area of supporting huge amounts of data. They were able

to as a result come up with various data management techniques which resulted in the creation of

interest from companies with similar issues. This brings about the birth of NoSQL and its growing

popularity today. (Zaki, A. K., 2014). NoSQL is a non-relational database considered as the future

of databases and they provide important features such as huge storage data storage, dynamic

schema, scale-out architecture, flexible data model and access requirements. NoSQL is nowadays

used for its scalability and performance characteristics which were not a problem ten years ago.

(Zaki, A. K., 2014).

mailto:musa.garba@kasu.edu.ng
mailto:hassan.abubakar@udusok.edu.ng

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

62

2. Background Review

For more than thirty (30) years relational databases have been in use for business data processing

as the best for storing personal data and financial records. (Mohamed, M. A. et al., 2014). Software

developers decided that their data is not fitting for the relational database model when data started

getting bigger and hence developed the NoSQL architecture for storing data. (Zaki. A. K. 2014).

NoSQL databases have a simple to comprehend data model and are of high scalability. They have

very easy query language, no instrument for data consistency and integrity and no need for

database security support. (Okman, L.; Gal-Oz, N.; Gonen, Y.; Gudes, E.; Abramov, J., 2011).

Perhaps the biggest advantage of the NoSQL database system is its ability to accommodate

unstructured data which include video, audio, word doc, emails etc. It offers excellent scalability.

The claim that NoSQL is of higher performance has also been shared by others which is vital for

large establishments with a huge amount of data (Leavitt, N.2010). As data generated by social

networks, real-time systems, and global users grow exponentially and storage for this huge data

on distributed system seek for alternatives it becomes expedient that major establishments with

huge data turn to the use of NoSQL for its storage. (Zaki. A. K. 2014). Atomicity, Consistency,

Isolation and Durability (ACID) restraints that relational database uses are not adhered to in

NoSQL databases. Providers of NoSQL listed this as advancement in terms of performance, but

we know that this is also undesirable. A good example of NoSQL database performance is

Cassandra which can manage over one hundred million users concurrently. (Okman, L.; Gal-Oz,

N.; Gonen, Y.; Gudes, E.; Abramov, J., 2011). Kunda and Phiri (2017) also did an extensive

review of some past literature on Relational Databases and NoSQL database model descriptions

and features, some of the challenges of NoSQL were highlighted. Their features were compared

by the authors to ascertain which one is better among the two in supporting modern database needs

taking into consideration the challenges of NoSQL and whether NoSQL can replace the Relational

Databases. Apart from the security challenge of NoSQL, lack of a standard query language was

mentioned by the authors due to numerous ways of implementing NoSQL since each has its own

language and interface which led to NoSQL having fewer users than the relational database. The

Authors conclude NoSQL’s popularity will be on the increase due to its Big Data, IoF and Social

Network capabilities but many applications will still rely on a relational database hence both

Databases must continue to co-exist to solve the shortcomings of one another. As it has been

shown relational database features are best at handling a limited volume of structured data while

NoSQL features are targeted at scalability and performance over a thin layer of security. Priyanka

and AmitPal (2016) describe NoSQL in relation to the relational database as an alternative, not a

replacement. NoSQL databases adapt BASE properties in place of ACID properties of relational

databases which led to achieving better performance and scalability. They therefore conclude that

although NoSQL adoption is at its peak right now with Facebook, Google, and Amazon due to its

advantages, it remains true that the situation at hand determines the type of database to be used

and hence a definitive decision on which one is better can’t be reached. The combination of those

database types in one application can also be considered for better performance, a process referred

to as Polyglot persistence. Pore and Pawar (2015) also discuss that the limitation of SQL database

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

63

technology in the handling of big data as well as big user’s requirement led Google, Amazon,

Facebook, and LinkedIn to be among the first companies to adopt NoSQL in other to overcome

the limitation. Dynamic schema, horizontal scalability and availability are some of the most

important features of NoSQL databases that make its adoption attractive despite its numerous

drawbacks such as “lack of RDBMS support for end-user querying, limited integrity constraints

like foreign key at the structure level and limited support for transaction processing” (Pore and

Pawar, 2015). After a detailed discussion on Axiomatics of SQL and NoSQL databases, the

authors conclude that the two databases have different behavior, hence the choice of the type of

databases to use depends on the application itself as well as the database size and the queries that

the application will perform.

3. NoSQL Categories

Key value (KV) Store

This is a very powerful and efficient method for NoSQL database systems. Normally data can be

stored as key-value pairs that are key array pairs for the purpose of retrieval using keys. Data are

stored in hash tables as alphanumeric with unique keys and values as either JSON or BLOB or a

string variable (Moniruzzaman, B. M, & Syed Akhter Hossain, 2013). Standalone tables should have

two columns, with one column held as primary key (PK) while the other will serve as the holder

of logical values. This procedure is known as Row store also called Tuple store since the data

belonging to a single record are all stored together. Some examples of key-value Database

Management System (DBMS) includeRiakredis, DynamoDB, Foundation DB and Dynomite.

Column-Oriented (Column Family or Wide Column) Stores

These are also called wide column stores, extensible records stores, column-oriented stores, or

columnar database. (Manoj V.,2014). This was created for the purpose of data storing and data

processing of a large amount of data which are distributed over different servers. Column family

stores are rows containing many columns which store values closely with all columns arranges

according to the column family. This is contrasting the relational databases that stores in structured

tables, rows and columns with fixed field sizes for every record. This variant of NoSQL data not

stored in structured tables but were housed in a large distributed architecture processed across

several systems. (Leavitt, N.2010) &(Manoj V. 2014). This will encourage the addition of new

columns in rows without inserting values in existing rows. It enables columns in Column family

databases to be extended with each key connecting to one or more columns. (Ajayi O.,2014). Fast

search and high performance on aggregation queries like Cassandra and Big Table is the main

advantage behind storing data in columns.

Document-Based Stores: Document-oriented Database

These are one of the leading categories of NoSQL databases. It is used for Management of data

retrieval, and store collection of textual documents e.g. XML, PDF, JSON etc. The schema for

document and relational models is quite similar since collections represent the tables. The

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

64

documents also represent the row and key-value pairs to represent Columns [6]. The document-

based database represents a collection of documents with semi-structured data inside which

includes different key-value pairs whose value can be accessed through the PK. Also due to the

schema, this type of NoSQL is flexible and can be changed easily which means that both keys and

values are searchable in the document. Moreover, the addition of more number of attributes to a

document is allowed by the users the data types may be different from the main document

(Moniruzzaman, B. M, &Syed Akhter Hossain, 2013).

The document stores databases support complex data with several indexes per database. Fault

tolerance and scalability are the important features of document databases. Though document

stores may not be appropriate in a situation where a database got relationships or normalizations.

(Nayak, A. et al., 2013). Some popular document stores are listed:

1. Couch DB

2. Terrastore

3. iBoxDB

4. AmisaDB

5. JasDB

6. EJDB

7. MongoDB

Graph Database

This is also known as Graph oriented databases and is a distinct type of NoSQL database. It stores

data in graphical form (Ajayi O.,2014) and (Nayak, A. et al.,2013). It has three concepts, the first

is called Nodes or Vertexes and they are equivalent to relational database tables. The second deals

with relationships between the Nodes called Edges. The third concept is the Properties these are

Key value pair called Columns. The keys are strings with value either primitive or array of the

primitive type. These are attached to both the nodes and their relationship (Nayak, A., et al., 2013).

It is apparent that the structure of graphs databases is constructed around a collection of Nodes

and Edges. The method does not include storing network data in Nodes and Edges but in a network

of Nodes and Edges. (Tyagi, C.2012). Index free adjacency which means that each Node should

contain direct pointer with its close Node is an important quality technique and in this method,

nodes do not contain dedicated indexes. This method or technique enables millions of records to

be traversed by making a smooth connection with data. With graph databases, ACID properties

are available with schema less architecture, rollback support with an effective storage in semi-

structured data (Ajayi O. 2014) and (Tyagi, C.2012&Nayak, A. et al., 2013). In graph databases,

it is possible for the exploration of a relationship among linked data by using pointers, unlike

relational databases. Examples of graph database applications are Social media applications such

as Twitter and Facebook. Others are access control, security and bioinformatics these serve as

options for managing large relationships of data sets. (Nayak, A. et al., 2013). These graph

databases are Graphbase, Trinity, AllegroGraph, Bigdata, Infinite graph and Neo4j.

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

65

4. Comparing Relational Database & NoSQL Security

Below is a table showing comparisons between the very well-known Relational databases and

Non-Relational Databases.

Table1. A Comparison of Relational Databases & NoSQL

Parameters Relational Databases Non-Relational Databases
1. Database model This model database is founded on

Relational approach also known as a

Relational database (RDBMS).

This database model is founded on the Model less approach

is also known as a non-relational or NoSQL database.

2. Data
Representation

Stores structured data in tabular form i.e.

(columns, rows) with relationships among

joins or table.

Stores unstructured data approach with several kinds of stores

such as Graph database, Key-value pairs, Document store or

Column Family,
.

3. Schema All the data must fit into pre-defined table

or structures.

The NoSQL schema is of high flexibility and dynamic.

4. Scaling Relational databases are vertically

scalable i.e. they increase the power of

hardware e.g. CPU, RAM, Hard disk etc.

These are horizontally scalable i.e. they increase capacity by

increasing machines or database servers.

5. Query Language Structured Query Language (SQL) is the

database language used for the

manipulation and definition of data.

There is no dedicated query language for NoSQL. Sometimes

Unstructured Query Language (UnQL) is used in NoSQL.

The syntax is also different for the databases. Most NoSQL

databases producers have created query languages for their

own products.

6. Transactional
operation

SQL is best with high transactions of

delete, insert and update of data.

While selecting data NoSQL databases are better.

7. Transactional
properties

Atomicity, Consistency, Isolation, and

Durability (ACID) properties are

employed by SQL databases.

Consistency, Availability and Partition tolerance (CAP

theory) are employed by NoSQL databases.

8. Consistency In relational databases is that all the users

should view the same data after

transacting. This enforces better

consistency than non-relational databases.

Eventual Consistency guarantees read and write after

transactions. All database entities will immediately be

consistent.

9. Normalization/

De-normalization
Normalization is used in relational

databases. A single table is divided into

several smaller ones for performance

improvement.

De-normalization is practiced with a non-relational database.

A single table is used for record storage. Operations such as

Select, Update, Delete and Insert will not be easy.

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

66

10. Data Integrity Comparing in relational databases will

remove all the duplicated records which

stop inconsistent data from stocking the

database.

Non-relational databases lack data replication. Flat databases

update each address manually and ensure consistency.

11. Data Retrieval SQL is used in relational databases which

by its primary key table accesses the

requested record.

The use of multiple criteria to access record is inefficient. This

can be found in a non-relational database. Several passes are

required before record for matches are inspected.

2. Data
manipulation

Relational database uses Data

Manipulation language (DDL) to

manipulate data.

HTTP PUT, DELETE and POST are RESTful interfaces used

by Non- relational database with several different formats

such as JSON, Thrift and RDF. Also, in use are Data

manipulation APIs e.g. Google data store.

13. Features Maintenance as a key facility of RDBMS

makes a repair, backup and tests easy by

presenting tools to the database

administrator.

Share nothing is a key feature of the NoSQL database. It

works by horizontal scaling, partitioning and replication of

data between several servers

Table 2. A Comparison of Relational Databases & NoSQL Security Services (Mohamed et al., 2014)
Parameters Relational Databases Non-Relational Databases

Authentication Relational databases usually have an

authentication mechanism which they use as it

applies

Most NoSQL databases are defaulted not to possess

authentication mechanism but uses external methods to

achieve same.

Data Integrity Data integration is achieved using ACID

properties in relational databases.
Data integrity not easily achievable in NoSQL since. BASE

properties are the only consistent principle.

Confidentiality Confidentiality of data is achieved in relational

databases using encryption techniques to store

data.

Clear storage of data. No data confidentiality.

Auditing There is provision for audit which allows data

to be written to syslog or xml files.

NoSQL databases mostly do not provide an audit. Some

provide but with issues since username and passwords are

stored within a log file and this is a security compromise.

Client

communication

Provision of secure client communication

mechanism is done by encryption and SSL

protocol.

This is not provided for in most NoSQL databases.

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

67

Integration of SQL and NoSQL as a Better Option

The option of integrating SQL and NoSQL has been part of the options discussed by different

researchers.” NoSQL and relational systems will likely co-exist for some time, and it is valuable

to query them simultaneously” Lawrence (2014). According to him a lot of research was carried

out towards integration of relational systems using view mediators and schema matching

techniques. He further argued that same concepts should work on NoSQL systems and their “prior

work on relational integration by Mason and Lawrence (2005) has been extended to support the

querying, integration, and virtualization of both relational and NoSQL systems.” To this effect,

architecture was developed by the author called Unity Architecture. This allow SQL queries

execution over both relational and NoSQL systems. The Unity System consist of virtualization

and Integration system, the virtualization layer handles translation of SQL queries to NoSQL APIs

thereby it executes operations that are not supported by NoSQL systems. Furthermore, the Unity

System establishes seamless interaction between NoSQL Systems, relational databases and

enterprise reporting applications with minimal overhead in SQL translation process. Similarly, in

their paper Gašpar et al (2017) discussed two approaches to data integration between relational

and NoSQL databases namely native and hybrid solutions. They use integration transactional data

from Oracle databases (a relational database) and data stored in MongoDB (a NoSQL database)

as an example. A native solution capitalizes on business layer and standard database drivers as

well as how business layer communicates with a specific database. In any integrated system it is

expected that data is stored in both, relational and NoSQL, hence for effective utilization of the

data, the databases must be integrated. In a native solution, the integration is implemented on the

business layer. Data retrieved from the databases (relational and NoSQL) are linked and converted

into a format useful to the user at (business) layer likewise, business layer is responsible for the

preparation of data to be stored in a specific (relational or NoSQL) database. In a hybrid solution,

an additional layer between business and data layer is established to enable SQL communication.

This enables developers to use common SQL patterns on the business layer but has to involve a

new layer for translating these SQL patterns into the NoSQL programming interface for

communication with the NoSQL database. They conclude that users determine the real value of

data by how they utilize the data for better understanding of their business, customers and suppliers

irrespective of where it is stored either in relational or NoSQL databases. Furthermore the world

today is globalized, volatile and dynamic, users like to explore data from everywhere, been it in

transactional systems, social networks, web sites etc. users will therefore not like any limitation

of data analysis due to where data is stored. It is a well-known fact that efficient response to present

and future business challenges rely on data analysis on a huge amount of data which leads to

discovery of knowledge hidden in the data. ” In that sense, the users see the database technology

as a powerful tool that has the task to provide access and use of data wherever it is stored.”(Gašpar

et al, 2017). Hence this leads to further research on the integration of data stored in both relational

and NoSQL database.

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

68

5. Conclusion

Relational databases are very important for solving ACID problems where data validity is needed

for support in dynamic queries. NoSQL is important for solving data availability issues when faster

access to data is needed and when there is a need for scaling based on requirement changes and

also useful for fraud detection over relational databases. It is left for you to pick the right tool for

the job. Relational database’s demand from companies will not go away anytime soon and neither

will today’s distributed and product-based IT structure. Meanwhile, large applications that are

satisfactory to the public will still be served by NoSQL databases.

Arguably, the core line of business applications that supports business shall be best obliged by

relational databases. This may even be wholly served by relational databases. Companies will

certainly fall within the mid-level spectrum of choosing both NoSQL and relational databases or

one of the two depending on the task at hand. It is important that the best approach by extension

the best fit application is selected. It will be wise to review the different facets of the several

database technologies in existence before deciding on a particular product considering the data

store it needs. The integration of relational and NoSQL databases is a major milestone that will

handle any type of user, enabling the user to performing data analysis on data from any type of

source been it relational or NoSql database.

6. Future Work

Future work from this paper can be conducted to improve integration by eliminating overhead

costs as well as optimizing the SQL queries for better performance.

7. Recommendation

The integration of relational and NoSQL databases will lead to a database revolution; hence no

institution would like to be left behind. Likewise, organizations and institutions in developing

countries need to sit up to meet the challenges, as pointed out by Runde (2017) that current data

revolution has a long way to go in developing countries. The following are recommendations that

can help in adapting integrated systems:

1. Adapting or utilization of already existing databases with features capable of integrating

SQL and NoSQL such as OrientDB by OrientDB ltd, thereby avoiding exhaustive time-

consuming process of finding appropriate driver or tool.

2. Integrating systems that will make easy the process of data capturing in remote areas (such

as USSD code system) with the applications running an integrated databasefor easy data

capture and effective utilization of the data from all sources (transactional data, social

media data etc.)

Reference

AmeyaNayak, Anil-Poriya & DikshayPoojary (2013). Types of NOSQL Databases and its Comparison

with Relational Databases. International Journal of Applied Information Systems (IJAIS)

Foundation of Computer Science FCS, New York, USA Volume 5– No.4, March 2013.

KASU JOURNAL OF MATHEMATICAL SCIENCES (KJMS) VOL. 1, ISSUE 2, December 2020
ISSN 2734-3839 (Print), ISSN 2735-962X (E-Copy)
http:/www.journal.kasu.edu.ng/index.php/kjms

69

Brewer, E. (2000). Towards Robust Distributed Systems.[Online]. Available:http://www.cs.berkeley.edu/

brewer/cs262b-2004/PODCkeynote.Pdf.

Gašpar, D., Mabić, M., & Krtalić, T.(2017,Sept) Integrating Two Worlds: Relational and NoSQL.

Lawrence, R. (2014, March). Integration and Virtualization of Relational SQL and NoSQL

Systemsincluding MySQL and MongoDB In Computational Science and Computational

Intelligence(CSCI), 2014 International Conference on (Vol. 1, pp. 285-290). IEEE

Leavitt, N. (2010). Will NoSQL databases live up to their promise? Computer, 43, 2, 12–14.

Manoj, V. (2014). Comparative Study of NoSQL Document, Column Store Databases and Evaluation of

Cassandra. International Journal of Database Management Systems (IJDMS) Vol.6, No.4, August

2014.

Mohamed, M. A., et al. (2014). Relational vs. NoSQL Databases: A Survey.

Moniruzzaman, B. M., Syed, A. H.,(2013). NoSQL Database: New Era of Databases for Big data Analytics

- Classification, Characteristics and Comparison, of Database Theory and Application [7].

Okman, L.,Gal-Oz, N., Gonen, Y., Gudes, E., &Abramov, J. (2011). Security issues in NoSQL databases

trust, security and privacy in computing and communications (TrustCom), IEEE 10th International

Conference, 541-547, 16-18.

Opeyemi Michael Ajayi, a Perspective of NoSQL: User Experience and Scalability of Cassandra and

MongoDB.

Pore, S. S., & Pawar, S. B. (2015). Comparative Study of SQL & NoSQL Databases Structure, 4(5)

Priyanka, A. (2016). A review of NOSQL databases, types and comparison with relational

database.International Journal of Engineering Science, 4963

Runde, D. (2017). The Data Revolution in Developing Countries Has a Long Way to Go. [Online]

Forbes.com. Available at: https://www.forbes.com/sites/danielrunde/2017/02/25/the-data-

revolution-in-developing-countries-has-a-long-way-to-go/#25a4176c1bfc [Accessed 20 Jul.

2018].

Shuxin, Y. and Indrakshi, R. (2005) Relational database operations modeling with UML, Proceedings of

the 19th International Conference on Advanced Information Networking and Applications, 927-

932.

T. Mason and R. Lawrence, “Dynamic Database Integration in a JDBC

Driver,” in ICEIS, 2005, pp. 326–333.

Tyagi, C., (2012). Comparative Analysis of Relational Databases and Graph Databases

Zaki. A., K. (2014). NoSQL Databases: New Millennium Database for Big Data, Big Users, Cloud

Computing and Its Security Challenges.

http://www.cs.berkeley.edu/

