Artifact-Centric Business Process Models in
UML

Montserrat Estafiol', Anna Queralt?, Maria Ribera Sancho', and Ernest
Teniente!

! Universitat Politecnica de Catalunya
Departament d’Enginyeria de Serveis i Sistemes d’Informacié
Jordi Girona 1-3, 08034 Barcelona
{estanyol,ribera, teniente}@essi.upc.edu
2 Barcelona Supercomputing Center
Jordi Girona 31, 08034 Barcelona
anna.queralt@bsc.es

Abstract. Business process modeling using an artifact-centric approach
has raised a significant interest over the last few years. This approach
is usually stated in terms of the BALSA framework which defines the
four “dimensions” of an artifact-centric business process model: Busi-
ness Artifacts, Lifecycles, Services and Associations. One of the research
challenges in this area is looking for different diagrams to represent these
dimensions. Bearing this in mind, the present paper shows how all the
elements in BALSA can be represented by using the UML language. The
advantages of using UML are many. First of all, it is a formal language
with a precise semantics. Secondly, it is widely used and understandable
by both business people and software developers. And, last but not least,
UML allows us to provide an artifact-centric specification for BALSA
which incorporates also some aspects of process-awareness.

Key words: business artifacts, BALSA framework, business process
modeling, UML

1 Introduction

Business process design is one of the most critical tasks in current organizations
since they rely on the services they offer, i.e. on the business they perform.
Business process models have been traditionally based on an activity-centric
perspective and thus specified by means of diagrams which define how a business
process or workflow is supposed to operate, but giving little importance (or none
at all) to the information produced as a consequence of the process execution.
Therefore, this approach under-specifies the data underlying the service and the
way it is manipulated by the process tasks [1].

Nearly a decade ago, a new information-centric approach to business process
modeling emerged [2] and it is still used today. It relies on the assumption that
any business needs to record details of what it produces in terms of concrete
information. Business artifacts, or simply artifacts, are proposed as a means

2 M. Estanol et al.

to record this information. They model key business-relevant entities which are
updated by a set of services (specified by pre and postconditions) that implement
business process tasks. This approach has been successfully applied in practice
[3] and it provides a simple and robust structure for workflow modeling.

The artifact-centric approach to business process specification has been
shown to have a great intuitive appeal to business managers. However, further
research is needed with regards to the “best” artifact-centric model since none
of the existing models can adequately handle the broad requirements of busi-
ness process modeling [4]. The chosen formalization should be based on a formal
structure suitable for use in rigorous development and design analysis [2]. More-
over, it should support flexibility both at the level of the individual enactment
of the workflow and by enabling rich evolution of the workflow schema.

Our work in this paper represents a step forward in this direction since we
propose to specify artifact-centric business process models by means of well-
known UML diagrams, from a high-level, technology-independent, perspective.
The advantages of using UML are many. First of all, it is an OMG and ISO/IEC
standard [5]. Secondly, it is used to represent both the static structure and the
dynamic behavior of the elements that are part of a system using a graphical
notation; thus it is possible to use diagrams to represent most of BALSA’s com-
ponents. In addition, these diagrams are understandable by people involved in
the business process, both from the business and from the system development
perspectives. Finally, UML provides extensibility mechanisms that permit more
flexibility in its use without losing its formality.

The diagrams we have chosen to use for business process specification allow
recording what information is produced by the business and how it is produced,
thus achieving the advantages of artifact-centric modeling. Moreover, these di-
agrams and the way we specify them make our proposal artifact-centric but
incorporating also some notions of process-awareness. In this way, we may also
explicitly capture the control flow of the business process, aspect which is usually
lacking in previous artifact-centric proposals.

The rest of the paper is structured in the following way. Section 2 provides
the details of our proposal for artifact-centric business process models in UML
and shows its application to an example. Section 3 compares our proposal with
related work. Finally, section 4 summarizes our conclusions and points out fur-
ther work.

2 Artifact-Centric Business Process Models in UML

Traditional process-centric business process models are essentially uni-dimensional
in the sense that they focus almost entirely on the process model, its constructs
and its patterns, and provide little or no support for understanding the struc-
ture or the lifecycle of the data that underlies and tracks the history of most
workflows [4].

In contrast, the artifact-centric approach provides four explicit, inter-related
but “separable” dimensions in the specification of the business process [4, 6].

Artifact-Centric Business Process Models in UML 3

This four-dimensional framework is referred to as “BALSA” - Business Artifacts,
Lifecycles, Services and Associations. By varying the model and constructs used
in each of the four dimensions one can obtain different artifact-centric business
process models with different characteristics [4]. By showing the UML diagram
which is more appropriate to define each one of these four dimensions we will be
able to construct our proposal for the specification of artifact-centric business
process models in this language.

Usually, UML diagrams make use of some textual notation to precisely specify
those aspects that cannot be graphically represented. Currently, OCL (Object
Constraint Language) [7] is probably the most popular of these notations and an
ISO/TIEC standard. OCL supplements UML by providing expressions that have
neither the ambiguities of natural language nor the inherent difficulty of using
complex mathematics. It was initially developed by IBM and now it is part of
the UML standard. Therefore, we will also use it in our proposal.

In the following subsections, we give a brief explanation of the four BALSA
dimensions and we detail how we propose to specify them in UML. We also
illustrate our proposal by showing some examples drawn from its application to
a well-known and widely used case study: EU-Rent, which summarizes a generic
process for renting a car within a car rental company. The whole specification
of EU-Rent as an artifact-centric business process model in UML can be found
in [8].

2.1 Business Artifacts as a Class Diagram

The conceptual schema of business artifacts is intended to hold all of the infor-
mation needed to complete business process execution. A business artifact has
an identity, which makes it distinguishable from any other artifact, and can be
tracked as it progresses through the workflow of the business process execution.
It will usually also have a set of attributes to store the data needed for the
workflow execution. The relationship of a business artifact with other artifacts
must also be shown when this information is relevant for the business being
defined. In business terms, an artifact represents the explicit knowledge con-
cerning progress toward a business operational goal at any instant. Therefore,
at any time of the execution, the information contained in the set of artifacts
records all the information about the business operation.

There is a strong parallelism between the notion of business artifact and
that of “domain concept” in conceptual modeling [9]. Domain concepts are rep-
resented in UML by means of class diagrams. A UML class diagram shows the
business entities and how they are related to each other, represented as classes
and associations respectively. Fach class (or business artifact) may have a se-
ries of attributes that represent relevant information for the business. Moreover,
they can be externally identified by specific attributes or by the relationships
they take part in. A class diagram may also require a list of integrity constraints
that, as their name implies, establish a series of restrictions over the class dia-
gram. Constraints can be specified either graphically in the UML class diagram
or textually by means of the OCL language.

4 M. Estanol et al.

Furthermore, UML allows representing class hierarchies graphically. We will
benefit from this by representing the different states in an artifact’s lifecycle as
subclasses of a superclass, as long as these subclasses hold relevant information
or are in relevant relationships. The advantage of having different subclasses
for a particular artifact is that it allows having exactly those attributes and
relationships that are needed according to its state, preserving at the same time
the artifact’s original ID and the characteristics that are independent of the
artifact’s state which are represented in the superclass.

In our example, the diagram in Figure 1 shows the relevant EU-Rent business
artifacts and how they relate to each other. Integrity constraints are defined in
natural language instead of OCL for the sake of readability.

IGroupAvailability

categoryOrder

0.1 | better

name : String

Car

1

0..

1

currentMileage : Double

isOfA

groupsAvailableNow

CarGroup

worse
0.1

isin

1.0

1 requestedGroup

CarModel

registrationNumber : String
acquisitionDate : Date
/ available : Boolean

0..1

0.*

lisAvailabl¢

Branch

name : String

1

carsAvailableNow

preparedTime : Time

pickUp

AssignedCar

name : String
characteristics : Sequence(String)

CanceledReservation

ionDate : Date

0.1
requestedModel

RentalAgreement <

1

pickUpBranch

dropOff

dropOffBranch

OpenRental
actualPickUpTime : DateTime

ClosedRental

actualReturnTime : DateTime

beginning : DateTime
initEnding : DateTime

Reservation
reservationDate : Date
creditCard : Natural

DrivinglLicense
number : Natural
issue : Date
expiration : Date

1

Ahas
1

EU_RentPerson

A Has 1

renter

id : String

name : String
address : String
birthdate : String
telephone : Natural

Fig. 1. Class diagram showing the business artifacts as classes

The integrity constraints for Figure 1 are the following:

— FEU_RentPerson is identified by its id.
— DrivingLicense is identified by number.

— Car is identified by registrationNumber.

— RentalAgreement is identified by beginning and its renter.

— An FEU_RentPerson cannot have overlapping RentalAgreements.

— An EU_RentPerson must have a valid (i.e not expired) DrivingLicense for the
RentalAgreement duration.

Branch, CarModel and CarGroup are identified by their name.

Artifact-Centric Business Process Models in UML 5

— The initEnding of a RentalAgreement must be later than its beginning. The
actualPickUpTime of an OpenRental must be later or equal to its beginning.
The actualReturnTime of a ClosedRental must also be later than its actu-
alPickUp Time.

— Relationship categoryOrder of CarGroup cannot have any cycles.

— A Car is available if all the rentals that it is assigned to are closed or canceled.
Otherwise it is not available.

— Relationship IsAwailable: Cars that a Branch is responsible for and that are
available.

— Relationship GroupAwailability: CarGroups available for a particular Branch,
obtained through the available Cars.

In Figure 1, RentalAgreement is the key business artifact in the car rental
process. A RentalAgreement is the result of an EU-RentPerson wanting to rent a
car for a particular period of time. It is identified by its attribute beginning and a
business artifact it is related to, EU_RentPerson. Notice that it is related to many
of the other classes in the diagram. It has a pick-up and drop-off Branch, and
may have a car assigned. A RentalAgreement may also be of several subtypes.
It will be of the Reservation subtype if the client has made a reservation in
advance. A Reservation is linked to a CarGroup for the rental, and may also be
linked to a particular CarModel if the client has expressed his/her preferences
for a particular brand and model of car. Reservations can be canceled, so there
is also a CanceledReservation subtype. A RentalAgreement will become of the
OpenRental subtype when a car is successfully handed over to the customer,
and will be of the ClosedRental subtype when the client returns the car to the
branch.

2.2 Business Artifacts Lifecycles as State Machine Diagrams

The lifecycle of a business artifact states the key, business-relevant, stages in the
possible evolution of the artifact, from inception to final disposal and archiving.
It is natural to represent it by using a variant of state machines, where each
state of the machine corresponds to a possible stage in the lifecycle of an artifact
from the class diagram [4].

We propose representing the states an artifact may go through in a UML
state machine diagram, in a similar way to the one proposed in [6]. However,
in contrast to this work, our state machine diagram includes a representation of
the events and the conditions about them that trigger the transitions between
consecutive states of the business artifact.

We distinguish two different kinds of events: external events (named call or
signal events in [9]) and internal events (named temporal or condition events
in [9]). External events are explicitly requested by the customer of the business
process and their behavior is specified by means of a set of associated services.
Internal events correspond to conditions stated over the content of the business
artifacts and cause the execution of services without requiring the customer
intervention. Services will be defined in the next section.

6 M. Estanol et al.

In Figure 2 we can see the corresponding state machine diagram for the busi-
ness artifact RentalAgreement. Initially, the RentalAgreement can be a Reserva-
tion or an OpenRental, depending on whether the client makes a reservation to
pick up the car on a later date (Make Reservation event) or he wishes to rent a
car immediately (Make Walk-In Rental event). If the user picks up the car after
having made a reservation (Pick Up Car event), the RentalAgreement becomes
an OpenRental. On the other hand, if the customer does not pick up the car on
the scheduled day or he decides to cancel the Reservation (Cancel Reservation
by Customer Demand event), the RentalAgreement becomes a CanceledReser-
vation. Finally, from OpenRental we will reach state ClosedRental after the user
returns the car (Return Car event). All the events are external, except the one
that takes place when the customer does not pick up the car. In this case, the
transition is triggered by comparing the current date with the beginning of the
rental agreement, when the beginning of the rental agreement has already gone
by. In this case, Cancel Reservation is executed. Finally, we should note that
there is a condition between square brackets in some of the events, success,
that indicates that the event should finish successfully in order for the business
artifact to change state.

today() > day (beginning)/ Cancel Reservation

[~\
Reservation CanceledReservation
Make Reservation [success]
AN Cancel Reservation by Customer Demand

7

Pick Up Car

Make Walk-In Rental [success] (apenRental Return Car ClosedRental

Fig. 2. State machine diagram that represents the lifecycle of RentalAgreement

It is worth noting that this diagram does not follow exactly the standard
described in [5]. For instance, we have more than one outgoing transition from
the start node. This is necessary because the RentalAgreement can be created
in different ways (e.g. by making a walk-in rental or a reservation).

2.3 Services as Operation Contracts in OCL

A service (or “task”) in a business process encapsulates a unit of work meaning-
ful to the whole business process. The action of services makes business artifacts
evolve, e.g. they may cause modifications on the information stored by the ar-
tifacts or they may make artifacts to evolve to a new stage, relevant from the
business perspective.

Existing approaches usually specify services by means of preconditions and
postconditions. We follow in this line by using OCL operation contracts. As

Artifact-Centric Business Process Models in UML 7

we have mentioned before, OCL is a formal language that avoids ambiguities.
Moreover, it is declarative, which means that it does not indicate how things
should be done, but rather what should be done. The advantage of using OCL
is that it is a part of the UML specification, which is an OMG standard and
also a ISO/IEC standard [5]. Moreover, it can be automatically translated into
first-order logic [10] or description logics [11], for instance, thus permitting to
perform automatic reasoning on the UML/OCL specification.

Operation contracts consist of a set of input parameters and output parame-
ters, a precondition and a postcondition. Both input and output parameters can
be classes (i.e. business artifacts) or simple types (e.g. integers, strings, etc.). A
precondition states the conditions that must be true before invoking the opera-
tion and refers to the values of artifact attributes at the time when the service
is called. The postcondition indicates the state of the business artifacts after the
execution of the operation. It may refer to the values of artifact attributes at
the time when the service is called (appending operator @pre) and to their val-
ues after the service has finished execution (no operator or appending operator
@post). Those artifacts that do not appear in the postcondition keep their state
from before the execution of the operation.

Returning to the example, we will focus on the process of making a walk-in
rental. A walk-in rental can be defined as the process whereby a client goes to a
branch of the company and rents a car on the spot without any previous reserva-
tion, as long as there are available cars. Therefore, we need a service or operation
that obtains all the data necessary for the rental. We have named it Obtain-
RentalData and its code can be seen in Listing 1. Given an EU_RentPerson, the
pick-up and drop-off Branches of the car, a CarGroup and/or a CarModel, and
the end date, the operation creates a new RentalAgreement. Note that we do not
check, for example, that this new RentalAgremeent does not overlap with other
RentalAgreements that the EU_RentPerson may have. This is because we want
to avoid redundancy and therefore we do not check conditions which are guar-
anteed somewhere else in the artifacts’ specification, such as the class diagram,
as described in [12]. The non-overlapping rental condition is already guaranteed
by the class diagram and its integrity constraints.

Listing 1. OCL code for ObtainRentalData

action ObtainRentalData(endDate: Date, dropOffBranch: String, carG:
String, carM: String, p: EU_RentPerson): RentalAgreement

localPre availableCarModel: carM<>’’ implies

currentBranch () .carsAvailableNow .carModel .name—>includes (carM)
localPre availableCarGroup: carG<>’’ implies

currentBranch () . groupsAvailableNow .name—>includes (carG)

localPost:

— Create Rental Agreement ——

RentalAgreement. alllnstances () —> exists(ra.oclIsNew () and ra.renter=p
and ra.beginning=now() and ra.initEnding=endDate and
ra.pickUpBranch=currentBranch () and
ra.dropOffBranch=Branch. alllnstances ()—>select (dob |
dob.name=dropOffBranch) and

— We assign the car model with the least mileage —

8 M. Estanol et al.

(if (carM <> ’’) then
ra.car = currentBranch () .carsAvailableNow —> select (c |
c.carModel .name=carM)—>sortedBy (currentMileage) —> first ()
else
(if (carG = ’’) then
ra.car = currentBranch () .carsAvailableNow —>
sortedBy (currentMileage) —> first ()
else
ra.car = currentBranch().carsAvailableNow —> select (c |
c.carModel.carGroup .name=carG) —> sortedBy (currentMileage)
—> first ()
endif)
endif)
and
—— We return the Rental Agreement ——
result = ra)

As it can be seen in Listing 1, the service requires an EU_RentPerson as a
parameter; therefore, we need to obtain this business artifact in some way before
its invocation. To do so, we need to check if the person is already registered and,
in case he/she is not, insert him/her into the system. As it will be seen in the
next section, we have split this job into two different services. We do not show
their details here due to space limitations.

2.4 Associations as Activity Diagrams

Having the services as detailed above is not enough. We also need a way to
establish the conditions under which services can be executed since, in a busi-
ness process, they make changes to artifacts in a manner that is restricted by
a family of constraints. These conditions/constraints might either be defined
through a procedural specification or through a declarative one. Most of the
existing proposals follow the second approach and define associations by means
of Condition-Action rules (as done in [13, 14, 15]) or by encoding them into the
service definition itself (see for instance [1]).

We propose to follow a procedural specification and to use UML activity
diagrams for specifying associations since they are aimed at defining the right
sequencing of service execution. In particular, we will have an activity diagram
for each external event in our state machine diagrams. In this way, each service in
which the event is decomposed is represented as an action (a rounded rectangle)
in the activity diagram. Arrows show the order in which actions (i.e. services)
have to be executed. Swimlanes indicate the main business artifact involved in
each action, and the notes stereotyped as Participant indicate who is responsible
for carrying out that action.

By modeling associations in this way we achieve our purpose of incorporating
some notions of process awareness, despite the intrinsic artifact-centric nature of
our proposal. Therefore, our proposal shows a way to explicitly and graphically
capture the control flow of the business process; in contrast to many proposals
such as [15] or [13] where they are represented textually.

The corresponding activity diagram for the external event Make Walk-In
Rental from our example is detailed in Figure 3.

Artifact-Centric Business Process Models in UML 9

('Make Walk-In Rental N

<<participant>.
Clerk

[null]

) '
'
— Insert New EU-Rent
Check Existing Person
Customer

[ns¢ null]
<<participant> Obtain Rental Data

Clerk -

\
\
.

N

.
<<participant>:
User cTT

Fig. 3. Correspoding activity diagram for Make Walk-In Rental

EU-RentPerson

RentalAgreement

<<succeed>>

Any

Handover

failure]

As it can be seen in the diagram, we need to execute the service Check-
EzistingCustomer first. Depending on its output, which will indicate whether
the person is registered in the system or not, we may insert a new customer
(InsertNewEU-RentPerson). In the end, we obtain the data for the rental (Ob-
tainRentalData) and we create a new RentalAgreement.

Notice that, apart from the services described above, there is an additional
action, Handover, with a rake-like symbol. This indicates an action that is further
defined in another activity diagram. The transition leading out of this action
takes us to a decision node. Depending on the result of the Handover action,
indicated between square brackets, Make Walk-In Rental will end successfully
(stereotyped as succeed) or not (stereotyped as fail). Although the process ends
in the same way regardless of its success or failure, it is important to make this
distinction, as the next stage in the lifecycle of the artifact RentalAgreement
depends on this outcome (see Figure 2).

Due to space limitations, we do not show the activity diagram of Handover
nor the details of the services/actions that make it up. They can be found on
[8].

3 Related Work

This section will look at the different alternatives used to represent the four el-
ements in the BALSA framework, i.e. business artifacts, lifecycles, services and
associations. Although most papers do not specifically state which form of repre-
sentation is used for each element, it is not difficult to establish a correspondence
between the representation in the different papers and the BALSA elements.
Business artifacts, sometimes referred to as business entities, are represented
in different ways in the literature. Various authors use database schemas [13, 14,

10 M. Estanol et al.

16]. A similar representation is proposed in [1, 15, 17, 2] where artifacts consist
of a set of attributes or variables. [18] represents the business artifact and its
lifecycle in one model that includes the artifact’s attributes. Another possibility
for representing them is using using an Entity-Relationship model as it is done
in [6]. [19] represents the data model of their example by means of an UML
class diagram. This differs from our proposal in that we propose using the UML
class diagram for representing the business artifacts themselves. [20] chooses to
represent artifacts as state machines defined by Petri nets.

Regarding the lifecycle of business artifacts, there are two main alternatives:
they either offer an explicit representation of the evolution of the artifact or it
is implicit. The explicit representations are normally based on a state machine
diagram. Examples are [6, 13]. A more formal approach is the one used in [19, 20],
where lifecycles are represented in variants of Petri nets. A similar alternative
is proposed in [21], where ArtiNets (similar to Petri nets) and DecSerFlow, a
declarative language, are used to represent the lifecycle of an artifact and its
constraints. Sometimes there is a variable in the artifact which stores its state
[1, 15]. [18] uses GSM to represent the artifacts’ lifecycles. The notation shares
some characteristics with ours, such as the ability to represent graphically guards
and stages. However, it adds the concept of milestone to represent conditions that
determine the closing of a state. On the other hand, the sequencing of stages is
determined by guard conditions instead of edges connecting the stages (although
it is possible to use edges as a macro). In other cases, the lifecycle is implicitly
represented by dynamic constraints expressed in logic [13] or the actions that
act upon artifacts [16, 14].

Services are also referred to as tasks or actions. Despite the different termi-
nology, in general they are described by using pre and postconditions (also called
effects). [13, 1, 15, 17, 16] use different variants of logic for this purpose. [14] fol-
lows the same idea but omitting the preconditions. [6] uses natural language to
specify pre and postconditions.

Associations are represented in different ways depending on the approach
of the paper. Some authors opt for using condition-action rules defined in logic
[13, 14]. [15] calls these conditions business rules; they should not be confused
with business rules in [1], which are conditions that are superimposed in the
already existing ones. In [1], preconditions determine the execution of the actions;
therefore, they act as associations. [6] also uses event-condition-action rules, but
they are defined in natural language. [19] uses what they call channels to define
the connections between proclets. A proclet is a labeled Petri net with ports that
describes the internal lifecycle of an artifact. Another alternative is DecSerFlow,
that allows specifying restrictions on the sequencing of services, and it is used in
[21]. Tt is a language grounded on temporal logic but also includes a graphical
representation. On the other hand, [2, 3] opt for a graphical representation using
flowcharts. However, unlike our proposal, they do not use a particular language
and little attention is given to the way of creating the flowchart.

Artifact-Centric Business Process Models in UML 11
4 Conclusions

There is no consensus on the best way to represent an information-centric model
and, in all probability, there will never be, due to the great variety of uses of
data-centric models. However, as [4] points out, it is important to experiment
with different models, in order to examine the different possibilities that each one
offers. Therefore, one contribution of this paper is identifying the UML diagrams
that can be used to represent a process from an artifact-centric perspective
following the BALSA framework.

To our knowledge, ours is the first proposal that suggests the use of UML
diagrams for representing all the elements in this framework. We have shown that
business artifacts can be represented in a class diagram, each artifact’s lifecycle
can be shown in a UML state machine diagram, services can be represented
by using OCL operation contracts, and a possible way of defining associations
is by means of a UML activity diagram. The use of an activity diagram for
representing the associations between services brings it closer to process-centric
methodologies and, at the same time, makes it easier to understand than just
having textual restrictions in the form of condition-action rules represented in
logic.

The importance of our contribution lies in the fact that UML is a standard in
the world of conceptual modeling, and OCL, as a complement to UML, is used to
represent those elements that cannot be graphically specified in UML. Moreover,
both languages can be automatically translated into logic and the translation
can be used for reasoning purposes. Therefore, our proposal offers the advantages
of a graphical representation, understandable by the users, without losing the
capacity of being used for reasoning.

As further work, we intend to define a way to perform automatic reasoning
on the definition of a process using our diagrams in order to be able to validate
its correctness, appropriateness and its quality before it is implemented.

Acknowledgments. This work has been partially supported by the Ministe-
rio de Ciencia e Innovacién under projects TIN2011-24747 and TIN2008-00444,
Grupo Consolidado, the FEDER funds and Universitat Politecnica de Catalunya.

References

1. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-
centric business processes. In Rinderle-Ma, S., Toumani, F., Wolf, K., eds.: BPM
2011. Volume 6896., Springer (2011) 3-16

2. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3) (2003) 428445

3. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-
centered operational modeling: lessons from customer engagements. IBM Syst. J.
46(4) (October 2007) 703-721

4. Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In Meersman, R., Tari, Z., eds.: OTM 2008. Volume 5332 of LNCS.
Springer Berlin / Heidelberg (2008) 1152-1163

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Estanol et al.

ISO: ISO/IEC 19505-2:2012 - OMG UML superstructure 2.4.1 (2012) Available
at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=52854.

Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology for Busi-
ness Processes. In: Handbook of Research on Business Process Management. (2009)
1-28

ISO: ISO/IEC 19507:2012 - OMG OCL version 2.3.1 (2012) Available
at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=57306.

Estanol, M., Queralt, A., Sancho, M.R., Teniente, E.: EU-Rent as an artifact-
centric business process model (2012) Available at: http://www.essi.upc.edu/
~estanyol/docs/artifacts_eu_rent.pdf.

Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007)

. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas

with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2) (2012) 13
Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning
on UML/OCL conceptual schemas. Data & Knowledge Engineering 73 (March
2012) 1-22

Queralt, A., Teniente, E.: Specifying the semantics of operation contracts in con-
ceptual modeling. In: Journal on Data Semantics VII. Volume 4244 of LNCS.
Springer Berlin / Heidelberg (2006) 33-56

Hariri, B.B., Calvanese, D., Giacomo, G.D., Masellis, R.D., Felli, P.: Foundations
of relational artifacts verification. In Rinderle-Ma, S., Toumani, F., Wolf, K., eds.:
BPM 2011. Volume 6896 of LNCS., Springer (2011) 379-395

Cangialosi, P., Giacomo, G.D., Masellis, R.D., Rosati, R.: Conjunctive artifact-
centric services. In Maglio, P.P., Weske, M., Yang, J., Fantinato, M., eds.: ICSOC
2010. Volume 6470 of LNCS., Springer (2010) 318-333

Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In Alonso, G., Dadam, P., Rosemann,
M., eds.: BPM 2007. Volume 4714 of LNCS., Springer (2007) 288-304
Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In Kappel, G., Maamar, Z., Nezhad, H.R.M., eds.: ICSOC
2011. Volume 7084 of LNCS., Springer Berlin Heidelberg (2011) 142-156

Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business
processes. In Fagin, R., ed.: ICDT 2009. Volume 361., ACM (2009) 225-238
Hull, R., et al.: Introducing the Guard-Stage-Milestone Approach for Specifying
Business Entity Lifecycles. In Bravetti, M., Bultan, T., eds.: WS-FM 2010. Volume
6551 of LNCS. (2011) 1-24

Fahland, D., Leoni, M.D., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral
conformance of artifact-centric process models. In Abramowicz, W., ed.: BIS 2011.
Volume 87 of LNBIP., Springer (2011) 37-49

Lohmann, N., Wolf, K.: Artifact-Centric Choreographies. In Maglio, P.P., Weske,
M., Yang, J., Fantinato, M., eds.: ICSOC 2010. Volume 6470 of LNCS., Springer
(2010) 32—-46

Kucukoguz, E., Su, J.: On lifecycle constraints of artifact-centric workflows. In
Bravetti, M., Bultan, T., eds.: WS-FM 2010. Volume 6551 of LNCS., Springer
(2011) 71-85

